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as at least 2 more peer-reviewed journal articles. 
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vortices in dynamic speckle fields” by A. Majumdar and S.J. Kirkpatrick, in J-BPE in 2018 
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vortices in dynamic speckle fields” by A. Majumdar and S.J. Kirkpatrick, in J-BPE in 2018 
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indicators of biophysical dynamics” by the same authors in the Proceedings of SPIE in 
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descriptors of long and short- range correlations in the spatial and temporal fluctuations of 

coherently scattered light” by the same authors in the Proceedings of SPIE in 2018 (doi: 

10.1117/12.2287590) and “Ellipticity imaging for visualizing and quantifying long and 

short range correlations in laser speckle data II: phantom and animal studies” by Majumdar 

et al. in the Proceedings of SPIE in 2019 (doi: 10.1117/12.2507019). Parts of this chapter 

are also under consideration for at least 1 peer-reviewed journal publication in the future. 

The animal studies described in this chapter were performed by the authors Ivan Fedosov, 

Arkady Abdurashitov, Oleg Grishin, Olga Sindeeva, Valery Tuchin and Sean J. Kirkpatrick 

at Saratov State University, Russia. The raw data from the animal studies were also 

obtained by these authors, while I performed the analysis that is presented in this 
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The permission granted for using parts of these publications have been attached in the 

Appendix section of this dissertation. 
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Abstract 
 

Coherent light - such as that from a laser - on interaction with biological tissues, undergoes 

scattering. This scattered light undergoes interference and the resultant field has randomly 

added phases and amplitudes. This random interference pattern is known as speckles, and 

has been the subject of multiple applications, including imaging techniques. These speckle 

fields inherently contain optical vortices, or phase singularities. These are locations where 

the intensity (or amplitude) of the interference pattern is zero, and the phase is undefined. 

In the research presented in this dissertation, dynamic speckle patterns were obtained 

through computer simulations as well as laboratory setups involving scattering from 

phantoms and animal tissues. Optical vortices were tracked within these patterns. Novel 

techniques were applied to relate scattering media dynamics with the temporal evolution 

of the speckle fields and the optical vortex locations. Parameters, such as optical vortex 

trail lengths, mobility of optical vortices and charge separation between different types of 

vortices were introduced and calculated. Mathematical formulations, namely Poincaré 

descriptors, were employed to analyze the statistics of speckle intensity and optical vortex 

dynamics. 

A brief review of the advancements in the understanding and detection of optical vortices 

is presented. This is followed by the theory behind Poincaré analysis. It is concluded that 

Poincaré descriptors can be used to characterize the correlation in a data series. Speckle 

patterns with different dynamic behaviors – such as Brownian and Lorentzian modes of 

decorrelation between consecutive frames, at varying rates - were studied. It was noted that 
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measuring the optical vortex parameters in a dynamically evolving field, provided insights 

into the decorrelation characteristics of the scattering medium. As speckle size is a 

statistical measure of the intensity variation in the field, the use of Poincaré descriptors to 

estimate speckle size is demonstrated. Additionally, these descriptors differentiate between 

short- and long-range orders in data. Laser speckle images obtained from flow in fluid 

phantoms and animal tissues indicated that Poincaré analysis provides an alternate method 

of quantifying flow.  
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1 Introduction to Optical Vortices 
 

In this chapter, we introduce phase singularities in wavefields, and why they are 

alternatively called “optical vortices”. We discuss some of their properties which have 

found modern applications. Excerpts of Section 1.3 of this chapter have been taken, with 

permission, from “Statistical studies on optical vortices in dynamic speckle fields” by A. 

Majumdar and S.J. Kirkpatrick, published in the Journal of Biomedical Photonics and 

Engineering in 2018. The letter of permission is attached in Appendix A.2. 

1.1 Light Waves 
 

Light is a form of electromagnetic radiation. It has been understood to display properties 

of waves as well as particles, and is thus considered to have a dual nature. As waves, it has 

properties such as wavelength, amplitude and phase. In vacuum, the speed of light is 

established to be exactly 299,792, 458 m/s, often approximated to 83 10×  m/s. The 

wavelength of visible light is commonly taken to be the range of 400-700 nm, but the exact 

range varies slightly by individual.  

As electromagnetic waves, light is governed by Maxwell’s equations. These equations and 

their implications for the study of phase singularities are discussed in the following section. 

1.2 Maxwell’s Equations 
 

As we will be dealing only with coherent light, the following discussion assumes 

monochromaticity. Additionally, the fields explored have no source of charge within them, 
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and only paraxial effects are considered. The waves are assumed to propagate in vacuum 

and polarization effects are ignored. 

Maxwell’s equations relating the electric field E


and the magnetic field B


 are considered 

the backbone of electrodynamics. They state that [1] 

 
0

E ρ
ε

∇• =


  (1.1) 

 0B∇• =


  (1.2) 

 
BE
t

∂
∇× = −

∂





  (1.3) 

and 

 0 0 0
EB J
t

µ µ ε ∂
∇× = +

∂



 

  (1.4) 

where  ρ  is the charge density (volumetric) in the region of interest, J


 is the displacement 

current introduced by Maxwell, and 0ε  and 0µ  are the permittivity and permeability of 

vacuum, respectively. If the region of interest has no sources of charge and no current, we 

have 0ρ =  and 0J =


 . Under these conditions, we obtain 

 
2

2
0 0 2

( )( ) ( ) 0 ( )B B EE E E
t t t

µ ε∂ ∂ ∇× ∂
∇ = ∇ ∇• −∇× ∇× = −∇× − = =

∂ ∂ ∂

  

  

  (1.5) 

A monochromatic wave can be represented as  

 ( , ) Re{ ( ) }i tE r t E r e ω−=
 

    (1.6) 
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Substituting into Eq. (1.5) reduces Eq. (1.6) to  

 2 2( ) ( ) 0E r k E r∇ + =
 

    (1.7) 

where 0 0k ω µ ε=  is known as the propagation constant of the wave. Eq. (1.7) is the 

vector form of the Helmholtz equation [2]. If the direction of propagation is constant 

throughout, leads to the scalar Helmholtz equation 

 2 2( ) ( ) 0U r k U r∇ + =
    (1.8) 

  Paraxial beams have an exponential form  

 ( ) ( ) ikzU r u r e≈
    (1.9) 

where z  is the direction of propagation. Further adding the assumption of slowly varying 

envelopes, these paraxial rays reduce the scalar Helmholtz equation (1.8) to the paraxial 

wave equation  

 
2 2

2 2 2 0u u uik
x y z

δ
δ

∂ ∂
+ + =

∂ ∂
  (1.10) 

1.2.1 Laguerre-Gauss Paraxial Beams 
 

Among the commonly studied solutions to the paraxial wave equations is the Gaussian 

beam, which has a Gaussian intensity distribution Eq. (1.7) at the z=0 plane.  

 
2 2 2

02( )/*
0( , ,0) ( , ,0) ( , ,0) x y wI x y u x y u x y I e− += =   (1.11) 
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The Laguerre-Gauss (LG) beams, one of the solutions to the paraxial wave equation, are a 

subset of Gaussian beams dealt with in the cylindrical coordinate system (as opposed to 

the Hermite-Gauss (HG) beams in the Cartesian coordinates). They form a set of 

cylindrically symmetric solutions given by the general form [3]

2

2
2

2 2
1

2 2 2

2 2( , , )
( ) ( )

1 ( )

exp( )exp( )exp( )exp( (2 1) tan ( ))
( ) 2( )

l

l
pl p

R

R R

Cu z L
w z w zz

z

ik z zil i p l
w z z z z

ρ ρρ φ

ρ ρφ −

    =    
    +

−
× − − − + +

+

(1.12) 

where ( )w z  is the radius of the beam given by 2
0( ) 1 ( )

R

zw z w
z

= + with 0w  being the 

beam waist and Rz  being the Rayleigh range, related by 
2
0

R
wz π
λ

=  for a Gaussian beam 

of wavelength λ  [4]. The Rayleigh range of the beam is defined as the distance at which 

the width of the beam has increased to √2 times the waist width (at z=0). The numbers l 

and p are indices of the associated Laguerre polynomials ( )l
pL x  given by  

| |
| | | |

| || |( ) ( 1) ( )
l

l l
p p ll

dL x L x
dx += −  (1.13) 

where ( )nL x  are the more commonly known Laguerre polynomials [5]

( ) ( )
!

x n
x n

n n

e dL x e x
n dx

−=  . (1.14) 

Normalizing Eq (1.12) leads to the amplitude distribution [5] 
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| | 2
| |

2

2 2
1

2 2 2

2 ! 1 2 2( , , )
( | |)! ( ) ( ) ( )

exp( )exp( )exp( )exp( (2 1) tan ( ))
( ) 2( )

l

l
pl p

R R

pu z L
p l w z w z w z

ik z zil i p l
w z z z z

ρ ρρ φ
π

ρ ρφ −

    =    +     
−

× − − − + +
+

    (1.15) 

The normalization factor comes from defining these beams to have a unit cross-sectional 

intensity 

 
2 2| ( ) | 1plu r d r =∫

 . (1.16) 

We note that the expression Eq. (1.15) for the amplitude distribution reduces to an ordinary 

Gaussian beam for 0p l= =  .The vanishing of the axial amplitude (where 0ρ =  )  is also 

evident for all 0.l ≠ Additionally, due to the ile φ  term, the phase rotates by an integral 

multiple of 2π  around the axis, at constant z. Thus, we have an “optical vortex” with zero 

amplitude at a point and the phase rotating by a multiple of 2π  around this point. On 

including the explicit time dependence term i te ω−  , we have a vortex that is traverses along 

the direction of propagation og the travelling LG beam.  

1.3 Properties of Optical Vortices 
 
1.3.1 Topological Charge and Index 

 

The number l  is referred to as the topological charge of the vortex, and is a conserved 

quantity during propagation. This refers to the integer multiple of 2π by which the phase 

of the field rotates around a vortex, and is mathematically given as [6] 
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 1 ( )
2 C

l r drφ
π

= ∇∫
 



  (1.17) 

This quantity dictates the angular momentum of light carried by the beam, whose value is 

l  per photon. The topological charge is an integer, with its sign denoting whether the 

phase rotates clockwise or counter-clockwise on propagation. The integral value is a 

necessary condition to conserve the continuity of the wavefield. To conserve this number, 

vortex generation and annihilation typically occurs in pairs of opposite and equal 

topological charges. Additionally, it has been observed that vortices with topological 

charge 1l =  are generally not affected by perturbations in the optical field, while vortices 

with higher charges eventually break down into vortices with 1l =  . We also note from Eq. 

(1.15) that the intensities of LG modes of the orders | |l   and | |l−  , with the same p  , are 

same. Thus, the phase cannot be determined uniquely from the intensity alone. This gives 

rise to a class of problems in optics, known as phase retrieval problems. 

Another conserved property of a wave field is what is called its topological index. This is 

mathematically defined as [6] 

 1 ( )
2 C

n r drθ
π

= ∇∫
 



  (1.18) 

where ( )rθ   is any vector field.  Physically, the topological index indicates the behavior of 

the gradient vectors to the surfaces of constant phase, in a wave field. Constructing a vector 

field from such gradient vectors, the topological index is the number of rotations such a 

vector field undergoes as a closed path around a feature in the field is traversed. These 

features may be singularities, sinks, sources or saddle points in the concerned wave field. 
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1.3.2 Angular Momentum of Light 
 

Poynting in 1909 was among the earliest to discuss the possibility of light waves carrying 

angular momentum with them [7]. Two types of momenta contribute to the total angular 

momentum of light – Spin Angular Momentum (SAM) due to the circular polarization of 

light and Orbital Angular Momentum (OAM) due to the twisting of the wavefield while 

propagating. While the SAM has been well investigated throughout the 20th century, the 

detailed study of OAM is fairly recent, with major groundwork done by Allen et al. [3]. 

They proposed that for elliptically polarized light (resulting in a helical phase front) with 

phase profile corresponding to ile φ  , the OAM is equal to l  per photon. Here, l is the 

topological charge, φ  is the phase and   is the reduced Planck constant. The OAM has 

since found applications in multiple forms in the fields of optical trapping and manipulation 

of microparticles [8-10]. Other applications have been developments in remote sensing and 

wireless communication [11] as well as exploring the information content of optical 

vortices [12, 13].  

1.3.3 Ubiquity  
 

In section 1.2.1, we have discussed the origin of the term “optical vortices” from the general 

expression Eq. (1.12) of the amplitude of Laguerre-Gauss (LG) beams.  These LG beams 

have been extensively studied to intrinsically contain optical vortices within them. In other 

words, it should be noted here that the generation of optical vortices does not require special 
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circumstances.  It is a phenomenon that accompanies any interference of randomly 

scattered plane waves [14].  However, experimentally, it has been identified that helically 

phased beams play a vital role in the formation of phase singularities [15]. These beams, 

particularly the Laguerre- Gaussian mode (LG01) have been shown [16] to be produced 

from a combination of Hermite-Gaussian modes HG01 and HG10. An alternative method of 

generation was demonstrated [17] in 1990 where a diffractive element such as a grating 

with a dislocation was used to obtain a helically phased mode from the Gaussian beam of 

a laser.  Subsequently, the generation of optical vortex beams has also been achieved using 

spiral phase plates [18], hologram [19] and spatial light modulators [20].  

1.4 Detection of Optical Vortices 
 

The main idea behind detecting the presence of an optical vortex is to be able to quantify 

the phase in a coherent light field. A brief review of some of the commonly applied 

methods is presented in this section.  

1.4.1 Spatial Phase Filtering 
 

In the 1980s, Golub [21, 22] demonstrated the possibility of using spatial filters to detect 

the phase of wavefields. Initially, these filters had pre-designed transmissions [22] to 

separate specific transverse modes. They were computer-synthesized and fabricated by 

precision systems. Transparencies were the most common spatial filters used in these 

experiments. A phase tilt was introduced for each individual mode in multimode beams. It 

was demonstrated that they accurately determined the transverse modes composition of 
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these beams [22]. Improvements in terms of higher selectivity of the modes as well as better 

energy efficiency were later made by the same group [23].  

 

1.4.2 Interferometry 
 

The next significant advancement in the detection of phase singularities was based on the 

observation of interference patterns arising from them. These were first reported for helical 

modes with topological charges up to 3 [24]. It was noted that the interference patterns 

arising from each mode corresponds to two possible states of opposite helicity, i.e., same 

topological charge, but opposite signs. 

 

1.4.3 Shack-Hartmann Sensors 
 

A Shack-Hartmann wavefront sensor is a multi-lens system used to characterize the shape 

of a wavefront, and has been in use in adaptive optics for a few decades [25]. The most 

common method is to perform a least-square reconstruction of the phase gradient, from the 

wavefront data obtained [25, 26]. However, performance issues have been reported in the 

presence of strong scintillations [27]. These issues have been attributed to optical vortices. 

As the phase is undefined at these locations, phase gradient calculations produced 

anomalies in the wavefront measurements. In the early 2000s, Chen et al.[28] demonstrated 

that suitable mathematical modifications of the sensor data can be used to obtain the 

location and the topological charge of these singularities.  
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1.4.4 Diffraction-based methods 
 

In 2010, Hickmann et al.[29] noted that helical beams diffracted by triangular apertures 

produced triangular lattices in the far field, which could be used to calculate the topological 

charge of the beam. This work included an experimental demonstration up to a charge of 

3. This method was further developed and expanded to a topological charge up to 7 soon 

[30]. Further work has since been done with a variety of apertures such as annular triangle 

[31], annular ellipse [32] and diamond-shaped [33] apertures.  The essence of all of these 

methods lies in the observation that the number of diffraction spots (maxima) in the 

resultant pattern indicated the magnitude of the charge while the orientation of the pattern 

indicated the sign.   

 

1.4.5 Automated Mode separation  
 

A key aspect of the spatial phase filtering approach mentioned above was that the desired 

composition of the modes to be extracted had to be encoded within the design of the filter. 

This requirement was removed by an improvement by Berkhout et al. [34] who used spatial 

light modulators to separate each mode of a helically phased beam to individual lines on a 

detector.  
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1.5 Summary 
 

Dislocations in wavefronts were first reported in the early 1970s [35] and have been a 

subject of investigation for the past few decades, under terms such as phase singularities 

or optical vortices. This chapter presented a discussion of why they are present in all 

coherent light fields, without the need of special circumstances. This was followed by a 

review of how the presence of these singularities are detected. In Chapter 3, we introduce 

another method for identifying the locations of these singularities, which uses a pseudo-

phase representation of the field. This method is used further in this dissertation work, and 

is thus treated with higher details.   

 

In chapter 2, we take a detour form our discussion of optical vortices, to introduce a 

mathematical formulation that has been used in the subsequent work presented in this 

dissertation.  
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2 Theory of Poincaré Analysis 
 

We introduce a novel approach to using dynamic laser speckle data to quantify biophysical 

dynamics including ordered flows and random motions.  The approach yields images that 

superficially resemble traditional laser speckle contrast images, but instead of relying on 

the statistics of the local time integrated intensity values calculated over temporal and 

sliding spatial windows as is done in laser speckle contrast imaging (LSCI) to create 

images, this approach – which we term “Ellipticity Imaging (EI)” -  directly yields images 

that quantify the relative dominance of long-range correlations in the temporal dimension 

of a series of speckle patterns to the short-range correlations in the same dimension.  The 

approach relies on a Poincaré analysis of the speckle data which yields metrics that 

statistically describe both the short-terms variations in the temporal speckle intensity (i.e., 

the standard deviation in successive differences) and also the corresponding long term 

variations.  These metrics are plotted against each other (Poincaré plots) and an ellipse fit 

to the data.  The ratio of the semi-major axis to the semi-minor axis of this ellipse for each 

temporal speckle sequence is then used as the data to form the images (thus the term EI).  

The theory of EI is presented.  The application of this approach to speckle data obtained 

from simulations, phantom studies and animal studies are presented in chapter 5 of this 

dissertation. Though not fundamental for understanding the work in this chapter, some of 

the parameters described here can be calculated in a MATLAB platform using the code in 

Appendix B.4. 
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2.1 Introduction 

When coherent light is scattered from a rough surface or scattering volume (such as 

biological tissues), granular interference patterns are produced. These are known as 

speckles [1]. If the scattering sample is dynamic, then the resultant speckle patterns evolve 

with time. These patterns have been the subject of extensive research that have led to a 

large number of applications exploiting speckle metrology [2] and interferometry [3]. 

Prominent among these applications is Laser Speckle Contrast Imaging (LSCI), which has 

developed over the last two decades from the early work of Briers and Webster [4]. 

Poincaré descriptors are a set of statistical measures which have been previously used to 

study heart rate variations [5]. In this paper, the underlying mathematical principles behind 

the relation between these Poincaré descriptors and correlation functions is first discussed. 

These correlation functions form the basis of analyzing the spatio-temporal behavior of 

evolving speckle fields. This is followed by a discussion on the potential for these 

descriptors to be used for imaging, similar to current LSCI methods.  

 2.2   Mathematical background 

2.2.1 Relating the Standard Descriptors and the Autocorrelation Function 

Let us consider a data series X, with elements indicated by X1, X2,….etc. For this series X, 

the autocorrelation function is given by 



www.manaraa.com

19 
 

 
1

1( )
N k

i i k i i k
i

k X X X X
N k

γ
−

+ +
=

= =
− ∑   (2.1) 

where Xi is the ith element of the series X, and N is the total number of elements in the series. 

The variable k is commonly called a “lag”, making the above definition the lag-k 

autocorrelation function. The overline denotes taking the mean.   

Clearly, 

 2(0) iXγ =   (2.2) 

gives the mean-squared value of the data series. 

For the same data series, the autocovariance function is given by 
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where  µ  is the mean of the data series. Clearly,  

 2 2(0) ( )iXφ µ σ= − =   (2.4) 

gives the variance of the series. Here, σ represents the standard deviation in the series.  

We note that 
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We introduce the “first error function” ε1 such that 

 2
1

1

1( ) 2 ( )
N k

i i k
i

k X X
N k

ε µ µ
−

+
=

= − +
− ∑   (2.6) 

This reduces Eq. (2.5) to 

 2
1( ) ( ) ( )k k kφ γ ε µ= + −   (2.7) 

Now, the standard descriptor SD1 is defined as [5] 

 
1
211( ) { ( )}

2 i i kSD k Var X X += −   (2.8) 

where Var(X) denotes the variance in the series X. 

Thus, 

 

2

22
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  (2.9) 

where we have introduced the “second error function” 2ε  such that 

 2

2 ( ) ( )i i kk X Xε += −   (2.10) 

We also note that for k=1, the first term of the right side in Eq. (2.9) becomes what is 

known in statistics as the “Mean Squared Successive Differences (MSSD)”. We shall 

henceforth denote the k-lagged MSSD as 
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 2
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We expand Eq. (2.11) to get 
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where the “third error function” 3ε  is introduced such that 

 2 2 2
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Substituting Eq. (2.12) into (2.9) gives 

 2 2
3 2

11( ) ( ) { ( ) ( )}
2iSD k X k k kγ ε ε= − + −   (2.14) 

Substituting expressions from Eq. (2.2) and Eq. (2.7) into the above Eq. (2.14) gives 

 2
1 3 2

11( ) (0) ( ) ( ) { ( ) ( )}
2

SD k k k k kφ φ ε ε ε= − + + −   (2.15) 

The other standard descriptor SD2 is defined as 

 
1

2 22( ) {2 ( ) 1( ) }SD k Var X SD k= −   (2.16) 

Thus, 
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We define “ellipticity” e as 

 
2( )( )
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SD ke k
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=   (2.18) 

Introducing an “overall error function”  

 1 3 2
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makes the expression for ellipticity  
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Dividing the numerator and denominator in Eq. (2.20) by the variance gives 
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where  

 2

( )
k

kε
σ

∆ =   (2.22) 

is the ratio of the error function to the variance of the data series. From here on, this ratio 

is referred to as the “normalized error function”. We also note that   
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where kr  is the lag-k autocorrelation coefficient. It can be noted that when the ellipticity 

value is close to 1.0, the autocorrelation coefficient is close to the value of the normalized 

error function ( )k∆  .In fact, since k is always a positive integer,  k kr < ∆  if ellipticity is 

exactly 1.0. It has been observed that the error function is in the range of 10-4-10-5. Thus, 

this condition on the ellipticity corresponds to an extremely small value for the 

autocorrelation coefficient. In other words, there is no correlation in the data. If the data 

series in concern is the spatial intensity distribution in a speckle field, this makes the value 

of lag where ellipticity is close to 1.0, an indicator of the speckle intensity correlation 

length.  

2.2.1.1 Use of the term “Ellipticity” 
 

As described by Brennan et al [5], traditionally, Poincaré plots are constructed by plotting 

the data point Xi+1 against the preceding data point Xi. This results in a scatterplot as shown 

by the red points in Fig 2.1. 
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Fig 2.1. A sample Poincaré plot. The scatter plot consists of each data point plotted 

against its predecessor. The ellipse is drawn centered on the line-of-identity with its semi-

axes equal to the values of the Poincaré descriptors 

Over this scatter plot, the line-of-identity with slope equal to unity is drawn. Centered on 

this line, an ellipse is constructed with semi-axis along the line-of-identity equal to SD2 

and semi-axis perpendicular to the line-of-identity equal to SD1. Thus, as the ratio between 

SD2 and SD1 determines the shape of the ellipse in the traditional Poincaré plot, we have 

used the term “ellipticity” to define this imaging technique. It is to be noted that while 

dealing with k-lag definitions, the y-axis of Fig 2.1 should be Xi+k instead of Xi+1.  

2.2.1.2 Notes 
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1. The factor of (N-k)-1 outside the summations in definitions Eq. (2.1) and Eq. (2.3) leads 

to what are called the “unbiased” definitions of these functions. Alternate definitions, 

called the “biased” versions of these functions exist in statistics, in which this factor of (N-

k)-1 is replaced by N-1. If these biased definitions are used for these functions, the right-

hand side of Eq. (2.23) reduces to exactly the autocorrelation function. In other words,  

 2

( )
k

k rφ
σ

=   (2.24) 

  

2. If the data series X is considered “wide-sense stationary” (true for speckle intensity 

variations as the Wiener-Khinchin Theorem is widely accepted to hold [6]), then the second 

error function is equal to 0. In practice, this number is observed to range from 10-5 to 10-12. 

Using this condition in Eq. (2.9) and Eq. (2.11) leads to  

 

 2 ( )1( )
2

MSSD kSD k ≈   (2.25) 

We recall that MSSD(k) is the k-lagged mean squared successive differences. Thus, SD1(k) 

is a measure of the variation in the data from one point (say, Xi) to the next k-lagged point 

(Xi+k). Thus, SD1(k) gives a sense of the short-term variations in the data. Additionally, 

from Eq. (2.16), we see that the standard descriptor SD2(k) is defined in terms of the 

difference between the variance and SD1(k). As the variance is a notation of the general 

spread in the data, and SD1(k), as discussed above, signifies the short-term variations in 

the data, SD2(k) thus gives a sense of the remaining contribution to the spread in the data. 
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We denote this as the long-term variations in the data. Also, including the approximation 

of Eq. (2.25) into the definitions Eq. (2.16) and Eq. (2.18), leads to 

2 2

2
2

( )2( ) 2
2

4( ) 1
( )

MSSD kSD k

e k
MSSD k

σ

σ

≈ −

≈ −
(2.26) 

Thus, ellipticity is a direct measure of the ratio of the variance to the lag-k mean squared 

successive difference.     

2.2.2 Relation to Laser Speckle Contrast Imaging (LSCI) 

In section 2.2.1, we noticed how the ellipticity values indicate the autocorrelation 

coefficient values, and thus in case of the spatial distribution of intensity in a speckle field, 

they give the correlation length (i.e. speckle size). If the data series represents the intensities 

of a single speckle at different points in time, then Eq. (2.3) gives the autocovariance of 

the temporal intensity fluctuations in that speckle. This has been related to the variance of 

speckle field by [6] 

2

0

2( ) 1 ( )
T

T d
T T

τσ φ τ τ = − 
 ∫   (2.27) 

where T is the integration time of the camera in speckle imaging settings. It is to be noted 

here that this expression is a corrected form of a previously used expression [7] by the same 

author. It was noted by Boas and Dunn [8] that the difference between the initial and the 

updated expressions for biomedical applications had little significance, as integration time 
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is much longer than the coherence time of the observed flow. The biased (see point 1 in 

Section 2.2.1.2) autocorrelation function, from Eq. (2.7) then becomes 

 2( ) ( )γ τ φ τ µ= +   (2.28) 

Dividing by the square of the mean gives the normalized definitions of these functions: 

 2 ( ) 1 ( )g cτ τ= +   (2.29) 

where 2

( )( )c φ ττ
µ

=  is the normalized temporal intensity autocovariance function and 

2 2

( )( )g γ ττ
µ

=  is the normalized temporal intensity autocorrelation function. The subscript 

‘2’ indicates that this is a second-order function, related to the first-order temporal electric 

field autocorrelation function 1( )g τ  using the Siegert relation [9] : 

 2
2 1( ) 1 | ( ) |g gτ β τ= +   (2.30) 

where β  is a geometric parameter accounting for loss of correlation normalized). Various 

models for 1( )g τ  have been proposed with multiple additions and/or modifications [6] 

including discussions on different models for Lorentzian (considered appropriate for dense 

and convoluted circulation such as capillary flow) and Gaussian (large blood vessels) flow 

models or a combination of both. 

Now, from Eq. (2.20), we have  
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Considering the data to be the temporal intensity fluctuations in a speckle, all the statistical 

definitions in Eq. (2.31) are for this temporal variation. To denote this, and to distinguish 

the variance symbol from the variance in spatial intensity indicated by the left-hand side of 

Eq. (2.27), we rewrite Eq. (2.31) as 

 
2

2
2

( ) 1( ) ( )
( ) 1

e
e τ
τφ τ σ ε τ
τ

 −
= + + 

  (2.32) 

This substituted into Eq. (2.27) gives the expression for the spatial variance in terms of the 

ellipticity and temporal variance as 
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∫   (2.33) 

where the subscripts s and τ  are used to distinguish the spatial and temporal variations in 

the intensity fluctuations.  

2.2.2.1 Potential advantages of these descriptors  
 

One of the most interesting differences in the two methods is the inherent importance of 

the MSSD (k) value in ellipticity measurement. Potentially, this makes any rapid short-term 

temporal changes in intensity appear more prominently in the ellipticity value, whereas 

that might be getting blurred out in the temporal autocorrelation (or autocovariance) values 

used in contrast imaging. We might need to look at actual LSCI data for 

confirmation/elimination of this hypothesis. We need to be conscious of the fact that at its 
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core, the ellipticity value is a measure of the relative prominence of long and short-term 

variations in the data.  

2.2.3 A discussion on the first and third error functions 
 

We note that the first error function was defined as 
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The terms can be re-arranged as below 
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We note that the expression in the first curly brackets is simply the difference between the 

overall mean and the mean of the first (N-k) terms, while the expression in the second curly 

brackets is the difference between the overall mean and the mean of the last (N-k) terms. 

Similarly, copying from Eq. (2.13) the expression for the third error function: 

 2 2 2
3

1

1( ) ( ) 2
N k

i i k i
i

k X X X
N k

ε
−

+
=

= + −
− ∑   (2.36) 

The terms can be re-arranged to  

 2 2 2 2
3

1 1

1 1( )
N k N k

i i i k i
i i

k X X X X
N k N k

ε
− −

+
= =

   = − + −   − −   
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We note that the expression in the first curly brackets is the difference between the mean 

square of the first (N-k) terms and the overall mean squared value, while the expression in 

the second curly brackets is the difference between the mean square of the last (N-k) terms 

and the overall mean squared value. 

2.3 Summary 
 

In this chapter, the mathematical background for Poincaré analysis is presented. For future 

consideration, a couple of points to note in this analysis would be: 

 

• We can always choose to select biased estimators instead of the currently used 

unbiased ones. As in Eq. (2.24), this will give a direct approach for the 

autocorrelation coefficient.  

• In any case, the ellipticity value is seen to be linearly varying with the ratio 

2

( )MSSD k
σ  . Thus, tracking this ratio alone gives just as much information as the 

ellipticity values. 

 

It is worthwhile to note that most of the material is presented without any specific 

consideration to speckle phenomena. Thus, this form of analysis can be used in other areas 

concerned with correlations among measured quantities.  

The specific application to speckle phenomena and the results obtained from such 

applications are discussed in chapter 5. Comparisons with existing methods for quantifying 
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these phenomena are also made. Application to certain aspects of optical vortex dynamics 

is also presented in chapters 3 and 4.   
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3 Statistical studies on Optical Vortices in simulated 
Speckle fields 
 

In chapter 1, we mentioned some advancements in the detection of optical vortices. In this 

chapter, we introduce another method that uses a pseudo-phase representation of an 

intensity field. We detect the presence of optical vortices with this method. We then relate 

the time evolution of the spatial distribution of these vortices to the dynamic systems that 

lead to their creation.  Excerpts of this chapter have been taken, with permission, from 

“Statistical studies on optical vortices in dynamic speckle fields” by A. Majumdar and S.J. 

Kirkpatrick, published in the Journal of Biomedical Photonics and Engineering in 2017. 

The letter of permission is attached in Appendix A.2. The calculations in this chapter have 

been performed in a MATLAB environment using the code in Appendix B.1. 

3.1 Speckle fields and Optical Vortices 
 

Random optical interference gives rise to a granular pattern with bright and dark regions 

called speckle. Light scattering techniques, including those involving laser speckle analysis 

have been used to study dynamic biological systems over the last several decades [1-4].  

Speckle based imaging techniques have seen tremendous advancements since the 1990s 

and are now well-established in the field of biomedical optics [5-7].  As mentioned in 

chapter 1, optical vortices are ubiquitous in a coherent field and do not require special 

circumstances to be formed.  Within speckle fields are also locations of phase discontinuity 

where the intensity of the field is zero and the phase is undefined. Such phase singularities 

were first described by Nye and Berry [8]. A few years later they reported an analysis of 
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phase singularity lines within fields of multiple beam interference [9]. Although the 

existence of these phase singularities have been known since the 1970s, their in-depth study 

in speckle fields [10] has garnered interest much more recently. 

While the key properties of optical vortices were highlighted in section 1.3, it would be 

appropriate here to re-iterate the presence of topological charges, which were introduced 

in section 1.3.1.  Key aspects of topological charges are used in our methods to detect 

optical vortex locations within speckle fields.  

Speckle fields, ( , )t r  , like other electromagnetic fields, can be written as a general 

solution of the Helmholtz equation as  

( ) ( ) ( ),, Α , t ,i tt e φψ = r rr  (3.1) 

where Α(𝐫𝐫, t) is the amplitude and 𝜙𝜙(𝒓𝒓, 𝑡𝑡) is the phase of the field, both at  location r and 

time t. The real and imaginary parts of this speckle field can be separated, with phase 

singularities occurring in locations where both the real and imaginary parts are zero (Fig 

3.1). 
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Fig 3.1. Zero-contours of real and imaginary field components. The red (solid) lines 

represent where Re( ) 0 =  and the black (broken) lines represent where ( )Im 0. =   The 

points of their intersection are the locations of phase singularities. 

 

In the immediate vicinity of and surrounding these singular points, the optical phase rotates 

in either a clockwise or counter-clockwise direction over at least a full 2π  radians and the 

structures are subsequently referred to as either negatively charged or positively charged 

optical vortices, respectively [11]. The number of 2π  rotations of the phase is known as 

the topological charge of the vortex, expressed mathematically as  

 1 ( , ) ,
2t

c

n x y dlφ
π

= ∇∫   (3.2) 

where the line integral is along a closed loop, l, around the vortex. Optical vortices always 

occur in pairs of opposite topological charge, and as a consequence of conservation of 
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charge, there must always be an equal number of positively and negatively charged vortices 

in the scattered field. 

3.2 Tracking Optical Vortices 
 

3.2.1 Simulation of Speckle fields 
 

Sequences of 50 speckle patterns with user-defined correlation behaviors were simulated 

using the concept of a copula [12] in the MATLAB environment. Decorrelation rates are 

defined in terms of the number of frames it takes for the overall speckle pattern 

autocorrelation coefficient to reduce to a value of 1/e . Three different rates of decorrelation 

behavior between the frames were studied, with their autocorrelation coefficients falling to 

1/ e  in 11, 6 and 3 frames, during the 50 frame simulation. Herein, they shall be referred 

to as the slow, medium and fast rates of decorrelation, respectively. For each of the rates, 

three different decorrelation behaviors (or modes) were studied. One mode was of constant 

sequential autocorrelation coefficient, Γ   (Γ =  0.9984 for slow decorrelation rate; Γ =0.99 

for medium decorrelation rate and Γ =0.96 for fast decorrelation rate) between frames. The 

second behavior was one that displayed a Gaussian decorrelation line shape. This 

decorrelation behavior has generally been understood to be caused by ordered dynamics 

[13]. The third behavior examined, Lorentzian decorrelation, is linked to Brownian 

dynamics. In general, biological systems likely exhibit a combination of ordered and 

Brownian (or disordered) dynamics. 
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3.2.2 Detecting Vortex locations in Speckle fields 
 

Once the 50 speckle patterns were generated for each decorrelation behavior studied, we 

created a pseudo-phase representation for each of the patterns using a two-dimensional 

Hilbert filter (Fig 3.2(b)) [10]. The location of optical vortices in the speckle were 

identified and tracked on a frame-by-frame basis through these sequences (Fig 3.2(c)).  
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Fig 3.2. Locating optical vortices in a speckle field. (a) A speckle image. (b) Its 

pseudo-phase representation. (c) Location of positive (blue circles) and negative 

(red points) vortices. The colorbar in (a) indicates relative intensity while those in 

(b) and (c) indicate phase. The axes represent spatial coordinates.

This was done using a series of convolution operations on the phase distribution over the 

speckle fields as shown in Eq. (3.3) and Eq. (3.4) [10]. This series of convolution operations 

gives non-zero values only at the locations of phase singularities. These values are the 

topological charge tn  at those locations. 

1 2 3 4( , ) ( , ) ( , ) ( , ) ,tn x y D x y D x y D x y Dφ φ φ φ= ⊗ + ⊗ + ⊗ + ⊗   (3.3) 

where ( , )x yφ  represents the pseudo-phase of the speckle field, ⊗  is the convolution 

operator and  
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 1 2 3 4

0 1 1 1 1 0 0 0
; ; ; .

0 1 0 0 1 0 1 1
D D D D

− −       
= = = =       − −       

  (3.4) 

   

The location of a positive (negative) topological charge is called a positive (negative) 

vortex. Physically, the two different charges represent the two opposing senses of rotation, 

clockwise and anti-clockwise, of the phase of the speckle field in the complex plane. 

Tracking any particular vortex, as it traverses through the frames, results in what has been 

termed a vortex trail [10]. 

 Physically, coherent light scattering from dynamic biological systems over a period of 

time leads to temporal decorrelation of the speckle pattern in the observation plane. In our 

simulations, the individual frames can be considered as snapshots of the speckle field as it 

decorrelates over time. Thus, traversing through frames is equivalent to the temporal 

movement of a vortex. In this context, frame numbers can be considered as discrete points 

in time. 
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(a) 

 

                                (b) 

Fig 3.3. Typical displays of vortex trails, as the vortices (red points: negative, 

blue circles: positive) are tracked through the 50 frames (a). Slow 
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decorrelation with autocorrelation coefficient falling to 1/ e    in 11 frames 

(b). A faster decorrelation with autocorrelation coefficient falling to 1/ e   in 

6 frames. 

 

Identifying the x and y coordinates of each optical vortex as it passes through the frames, 

gives rise to a trail from its point of generation to its point of annihilation. Occasionally, a 

trail also ends due the vortex leaving the field of observation. A trail is called either a 

positive or a negative trail, according to the sign of the topological charge contained in the 

vortex that created it. When a negative and a positive vortex intersect at a single spatial and 

temporal location, they annihilate each other and both trails that they were forming end 

[10]. 

A challenge in the simulations discussed herein was to draw the boundary between a 

continuous trail and a new trail starting close to where a trail ended in the previous frame. 

As the locations of the vortices were defined in the terms of discrete pixels, it was essential 

to decide how close two vortices in adjacent frames must be to be considered the part of 

the same trail. Based on empirical observations of multiple simulation results, it was 

determined that a change of four or more pixels in any direction would be considered to be 

the beginning of a new trail. 

 To create the vortex trail displays like the ones shown in Fig 3.3, the vortices in each frame 

were located as described above, using the series of convolution operators. The location of 

each vortex, found in this fashion, was then stored on a frame-by-frame basis. The 

coordinates of the vortices found in each frame formed an individual list. This was followed 
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by locating the first vortex in the first frame (or equivalently, the first list) and searching 

for a vortex in the second frame such that it was within four pixels in any direction of the 

coordinates of the previous vortex found. If such a vortex did not exist, then the trail ended 

and a new trail began with the next vortex in the first frame. If a vortex was found within 

the pre-defined four pixel radius, we moved to the third frame and searched for a vortex 

within the same radius with the coordinates of the second frame as the center location. In 

this manner, each trail continued until no vortex was found within the set radius of 4 pixels, 

or all the frames were exhausted. After all the trails starting from the first frame were 

tracked, the algorithm searched for trails starting from second frame using vortices that 

were not already considered to constitute any of the previously formed trails. This process 

continued through the final frame. A pictorial description of this algorithm is shown as a 

flowchart in Fig 3.4. 
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Fig 3.4.  Flowchart representing the algorithm followed to track individual optical vortex 

trails. 

3.3 Measurements on Optical Vortices 
 

3.3.1 Definitions 
 

Once the individual trails were tracked, various parameters of the motion of the vortices 

were investigated.  One parameter investigated was the average length of the positive and 
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negative trails, as well as the overall average length of all trails regardless of charge. This 

was defined in terms of the number of frames the average trail survived. Another parameter 

studied was the average displacement of the vortices, as they traversed through the frames 

(equivalently, through time). For this, the positive and negative centers of the frames were 

determined. A positive (negative) center ( , )c cX Y  of a frame is defined as the mean location 

of all the positive (negative) vortices in the frame: 

 1 1; ,

n n

i i
i i

c c

x y
X Y

n n
= == =
∑ ∑

  (3.5) 

where ( , )i ix y  is the coordinates of the thi  vortex in the frame and n is the total number of 

positive (negative) vortices in the frame. The overall center of the frame ( , )co coX Y   is the 

weighed mean location of the positive and negative centers: 

 ; ,p cp n cn p cp n cn
co co

p n p n

n X n X n Y n Y
X Y

n n n n
+ +

= =
+ +

  (3.6) 

where ( , )cp cpX Y  is the location of the positive center and ( , )cn cnX Y  is the location of the 

negative center; pn  and nn  represent the number of positive and negative vortices in the 

frame, respectively.  We defined the mobility, M ,  for each type of vortex as the mean 

distance moved by their center, per frame: 

 1 2 1 2
, , , , , , , , , ,

2

1 ( ) ( ) ,
1

N
i i i i

cp cn co cp cn co cp cn co cp cn co cp cn co
i

M X X Y Y
N

− −

=

= − + −
− ∑   (3.7) 
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where Mcq represents the mobility of the qth type of vortex and  ( ),i i
cq cqX Y  is the location 

of the center of qth type of vortex in the ith frame. As indicated, q can represent positive (p), 

negative (n) or overall (o). N is the total number of frames in the simulation. 

Additionally, the distance between the positive and negative centers of each the frame was 

studied. We have termed this distance as the charge separation, G(i). Poincaré plots were 

used to analyze the charge separation. The mathematical basis for these plots is detailed in 

chapter 2. Poincaré plots are used to display consecutive measurements against each other, 

i.e., the ith element of a series X, X(i) is plotted against the (i-1)th element, X(i-1). This is

continued for all set of consecutive data points on X.  

Once all the data points are plotted as above, standardized metrics SD1 and SD2 for the 

data set are measured with the following definitions 

( ){ }

2

2

1

1
2

1 11 ( ( 1) ( ))
2 2

2 2 1  

;

,

SD Var X i X i

SD Var X SD

= − −

= −

(3.8) 

where Var(X) stands for the variance of the data series X. 

An ellipse fitting process is then employed over the Poincaré plots. This ellipse has semi-

major axis length of SD2 and semi-minor axis length of SD1 with the major axis inclined 

at 45o to the horizontal axis of the Poincaré plot (Fig 3.7). The metric SD1 represents the 

short-term variations of the quantity measured (such as standard deviation in successive 

differences), while SD2 is what remains when contribution of SD1 is removed from the 

variance (Eq. (3.7)) and thus indicates the long-term variations. The shape of the obtained 
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ellipse indicates the comparative effects of each type of variation. The more dominant long-

term variations are, the higher is the magnitude of the semi-major axis (given by SD2), 

resulting in a more elongated ellipse. 

3.3.2 Results and discussion 
 

The average trail lengths and number of trails for each type of vortex is noted in Table 3.1.  

 Slow Decorrelation Medium 

Decorrelation 

Fast Decorrelation 

 C G L C G L C G L 

Positive Trail 

Length (frames) 

9.85 8.71 10.09 3.93 4.04 4.42 2.02 2.14 2.48 

Negative Trail 

Length (frames) 

9.78 8.64 10.39 3.73 4.21 4.51 1.94 2.05 2.45 

Positive Trail Nos. 71 80 64 169 163 154 323 304 282 

Negative Trail Nos. 68 83 61 176 164 148 331 314 274 

 

Table 3.1. Average trail lengths and number of trails of each type (C: Constant; G: 

Gaussian; L: Lorentzian). The trail lengths are given as the number of frames the trail 

lasted. Total number of frames in the simulation = 50. 
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The effects of decorrelation line shapes and rates were investigated (see above).  By 

weighting the trail length of each type (positive and negative) by the corresponding number 

of trails, the overall average trail length of each type and rate of decorrelation was obtained. 

These results are displayed in Fig 3.5.  

 

Fig 3.5. Average trail length for each decorrelation type, under three different rates of 

decorrelation. (Slow: (1/e) = 11 frames; Medium: (1/e) =6 frames; Fast: (1/e) =3 frames; 

Total frames in simulation = 50. No. of repeated measurements for each behavior = 20; 

Error bars represent 1 standard deviation 
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The Lorentzian decorrelation behavior typically resulted in longer and fewer trails 

compared to Gaussian decorrelation, given the same rate of decorrelation (p < 0.01 for both 

the slow and fast rates of decorrelation shown in Fig 3.5). Student’s t-test for difference of 

means was used for all statistical significance testing in this study. Additionally, it was also 

observed that as the rate of decorrelation increases, the average trail length of each mode 

became shorter. For each type of decorrelation, the number of vortices in each frame 

roughly remained independent of all other simulation conditions. The number of vortices 

identified was on the order of half of the number of coherence areas in each speckle field 

[14]. Thus, longer trails directly resulted in fewer number of trails. In addition to elongated 

trail lengths, slower decorrelation was also found to be associated with lesser number of 

individual trails. The third mode, constant rate of decorrelation (Γ  =  0.9984 for slow, 

Γ =  0.99 for medium and Γ =  0.96 for fast decorrelation, respectively), formed the 

shortest, and by extension, the most number of trails at the medium and fast decorrelation 

modes. At the slowest decorrelation rate, the constant decorrelation mode formed trails 

longer than the Gaussian mode, but shorter than the Lorentzian mode. 
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Fig 3.6. Average vortex displacement (or mobility) for each mode, under three different 

rates of decorrelation (same as Fig 3.5). Total measurements = 20; Error bars represent 

one standard deviation 
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Negative 

Displacement 
2.96 2.97 2.29 4.26 4.50 3.71 5.17 5.56 4.57 

Overall 

Displacement 
2.66 2.62 2.10 4.02 4.38 3.38 4.89 4.91 3.95 

 

Table 3.2. The average displacement of each type of vortex center as they travel through 

the frames (C: Constant; G: Gaussian; L: Lorentzian). All distances are given in terms of 

coordinate points. Each frame was a square of 64 × 64 coordinate points. 

 

The next parameter that was investigated was the mobility, M , of the vortices. Mobility 

was defined in terms of the average displacement incurred by the center of each type of 

vortex field, while moving between consecutive frames. From Table 3.2, we can observe 

that the vortices experienced higher mobility under Gaussian decorrelation, as compared 

to Lorentzian decorrelation (p < 0.01). Additionally, increasing the rate of decorrelation 

resulted in higher motion of the vortices (p < 0.01). Combining the results from both the 

tables above, it can be seen that the longer trails were associated smaller displacements. 

To study the variations in charge separation, Poincaré plots [7] were employed. As noted 

above, these plots are used to investigate the long-term and short-term variations in a 

variable.  In this case, the variable in question was the charge separation over the 50 frames. 

A typical Poincaré plot from this set of measurements is shown in Fig 3.7. 
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Fig 3.7 . A typical Poincaré plot obtained for charge separation ( )G i  . The magnitude of 

descriptor SD1 indicates short-term variability in the value of the separation, while SD2 

indicates the long-term variability. In this plot, SD1 = 1.01 and SD2 = 1.85. The lengths 

are in terms of coordinate points. This simulation was done for a 64 X 64 pixel speckle 

field. 

 

It was observed that slow decorrelation resulted in elongated ellipses on the Poincaré plot, 

which is a result of higher SD2/SD1 ratio. As mentioned earlier, this is the ratio of the long-

term variability to the short-term variability. Thus, we notice that as the decorrelation rate 

increases, the short-term variations tend to become more prominent as compared to the 

long-term variations. This ratio tends towards a value of 1.0 at higher decorrelation rates. 

The SD2/SD1 ratios can be visualized by placing the obtained ellipses in overlap with each 

other, as shown in Fig 3.8. 
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        (c) 

Fig 3.8 . Ellipses from the Poincaré plots of charge separation G(i) for (a) Gaussian(b) 

Constant and (c) Lorentzian decorrelation behavior. (O: Slow decorrelation;  X : Medium 

decorrelation; - :Fast decorrelation). It can be noted that the ellipses are prominently 

elongated for the slowest rate of decorrelation, indicating a high SD2/SD1 ratio. This 

elongation of the ellipse indicates a greater effect of long-term variations on the 

conditions under which the measurement has been made. 

 

It can be seen that the use of Poincaré plots of charge separation gives a stronger indication 

of the rate of decorrelation, rather than the lineshape of the decorrelation. Thus, this can be 

used as an indicator of the rate of dynamics in a system as is discussed below. 

 



www.manaraa.com

54 
 

 

3.4 Analysis 
 

A new approach to studying dynamic systems by tracking phase singularities (or optical 

vortices) has been presented. Speckle patterns for biological systems inherently contain 

phase singularities, or optical vortices, points around which the phase of the field rotates. 

In this work we have related the observed dynamics of the optical vortices in a simulated 

speckle field, to the type and rate of decorrelation in the field. This decorrelation is a 

representative of the dynamic behavior of scatterers that, under coherent illumination, 

produced the speckle field under observation [13].  

Analyzing the location of vortices at discrete time points in a speckle field simulated using 

a pre-defined rate of decorrelation, we note the expected result that as the rate increased, 

the lengths of the vortex trails decreased. In this study, the rate of speckle decorrelation 

was assumed to correspond to the rate of activity in the scattering object. Thus, in a 

scattering medium with fast motion among particles, the individual phase singularities tend 

to survive for shorter periods of time. Faster activity was also shown to result in a higher 

degree of vortex displacement per frame in the location of the singularities. Additionally, 

we compared different modes of activity; a Lorentzian decorrelation relationship between 

frames, corresponding to Brownian or unordered form of activity among the scatterers and 

a Gaussian decorrelation relationship, corresponding to an ordered mode of activity among 

the scatterers. The ordered motion resulted in more mobile phase singularities as they 

traversed through time. This also corresponds to shorter durations for which the trails 

existed.  We remind the readers that the mobility, M, is defined as the average displacement 
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per frame of the mean location (center) of the vortices. A possible reason for low vortex 

mobility for Brownian motion could be the homogeneous line profile of the scatterer 

distribution in a Lorentzian flow model [15]. This homogeneity results in no preferential 

direction for the vortices to move. This results in the average summed motion to be less 

than the Gaussian flow model, which has an inhomogeneous line profile of the scatterers 

[15]. We also examined a technique of analyzing sequential vortex data using Poincaré 

plots, by separating the long and short-term variations and calculating their relative 

prominence with regards to each other. When applied to the average charge separation per 

frame, this technique did not indicate any significant difference between the different 

modes of decorrelation. However, reducing the rate of decorrelation did result in the 

Poincaré ellipses elongating, indicating a higher prominence of the long-term variations.  

A possible reason could be that faster decorrelation did not allow sufficient time for the 

long-term trends in the data to dominate over the short-term trends. We note here that at 

no point at all do the short-term variations 1SD   dominate over the long-term variations 

2SD  .  In the case in which 1 2SD SD> the ellipse would be more “broad” than “long’, i.e., 

the major and minor axes would have reversed. Thus, the use of Poincaré plots was more 

useful in comparing the different rates of activity, rather than the different modes of 

activity. 

Note that actual phase information is not available in the intensity speckle patterns, and 

thus we took the approach of calculating pseudo-phase estimate maps using convolution 

operators [10]. While this approach will not necessarily re-create the true phase of an 

imaged speckle pattern, the behavior of the vortices is not affected.  Also, the simulation 

only takes into account a limited spatial window of the speckle field. Thus, there are 
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instances of minor topological charge imbalance (about 1 extra vortex in 4000 total 

vortices) in some of the simulations. This usually occurred in situations where a vortex was 

close to the edge of the observation window, and the opposite topological charge 

corresponding to this lone vortex was just outside the window. This oppositely charged 

vortex typically appeared within the window in the very next frame, thus balancing out the 

charges. This can be thought of as a case where a pair production happens right at the edge 

of the window, but only half the pair is within the window at that instant. It is also to be 

noted we are currently not in a position to speculate on the physical significance of some 

of the parameters noted here (such as the charge separation, G(i)). As such, they are 

introduced only as a measureable feature with some sensitivity to the simulation dynamics 

(in the case of G(i), sensitivity to the rate of activity). 

 

3.5 Summary 
 

In this chapter, methods to analyze vortex dynamics in simulated dynamic speckle fields 

have been introduced. These methods can be used to add to our current understanding of 

the field of singular optics. This can, in turn be used to improve existing microscopy and 

imaging techniques, particularly those aimed at quantifying biophysical dynamics. 

Simulating additional biological features such as tumors and other complex systems 

containing dynamics scattering elements, and identifying them using the dynamics of 

optical vortices as done here, is among the possible directions in which this research can 

progress. For now, we turn to mimicking the systems simulated in this section, in a 

laboratory. In the next chapter, fluid phantoms and metal blocks are used as scattering 
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systems with varying degree and mode of orderliness in their dynamics. The vortex 

dynamics obtained in their speckle fields are analyzed similar to how it is done for 

simulated fields in this chapter. 
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4 Optical Vortices from Dynamic Scattering Samples 
 

In the last chapter, correlations were drawn between dynamic scatterer system behavior 

and evolution of optical vortex fields, through simulated speckles. In this chapter, similar 

correlations are drawn between physical systems and their resultant vortex fields. The 

calculations in this chapter have been performed in a MATLAB environment using the 

code in Appendix B.2. 

 
4.1 Introduction 
 

When coherent waves- such as those from a laser source- are scattered from biological 

tissues, granular structures appear in the scattered field. These structures, called speckle 

patterns, are due to the random interference of the incident coherent waves. These patterns 

have been the subject of extensive research and are a subject of large number of 

applications exploiting speckle metrology and interferometry [1]. Within these speckle 

fields are locations where the phase of the resultant wave is undefined and the electric field 

amplitude - and by extension, the intensity- is zero [2]. These phase singularities are known 

as optical vortices. The word “vortex” is used as the phase undergoes a rotation around the 

singularity. This rotation can have one of two senses- clockwise and counter-clockwise. 

Depending on this sense of rotation, optical vortices are denoted to have either a positive 

or a negative topological charge [3]. The value of this charge tn   indicates the number of 

rotations of 2π  radians the phase goes through, around the singularity:  
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2t

c

n x y dlφ
π

= ∇∫  (4.1) 

 where φ  is the phase and the line integral is along a closed loop, l, around the vortex. 

As in chapter 3, Majumdar and Kirkpatrick [4] have demonstrated that in speckle fields 

simulated using computer algorithms, the evolution of optical vortex distribution can be 

correlated to the type and rate of activity in the scattering source. In this work, solutions of 

microspheres works as proxy for biological tissues. Laser light scattered from these 

solutions give rise to speckle patterns. These patterns and the singularities in a pseudo-

phase mask obtained from these patterns are then analyzed. The range of motions studies 

vary from the completely ordered motion with decorrelation, to completely disordered 

motion. Additionally, effect of temperature in the motion of the optical vortices is also 

analyzed. Comparisons are drawn between the previously demonstrated results from 

simulated speckle fields, and the analysis of these systems that represent biophysical 

tissues.     

4.2 Materials and Methods 

4.2.1 Source of scatterers 

Fluid phantoms comprising of hollow glass microspheres (Potters Industries, Inc.) 

suspended in DI-water were used to represent Brownian motion (i.e., Lorentzian 

decorrelation in the time-evolving speckle field). The solutions were held in transparent 

colorless cuvettes of internal cross-section 10 mm X 10 mm. The concentrations of 

microsphere solution used in this study ranged from 0.060 mg/ml to 0.157 mg/ml. To 
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represent orderly motion (i.e. Gaussian decorrelation), the same cuvettes without the 

solutions were used. Additionally, to observe a state of zero decorrelation, the roughened 

side of a block of aluminum was used to scatter light. 

4.2.2 Obtaining Speckle Images 
 

A polarized 532-nm laser (Melles Griot, Inc.) was used as the source of illumination for 

this experiment. The light from this source was passed through a variable neutral density 

filter and focused at the center of the scattering sample using a 10X microscope objective 

(Newport, Inc.). To obtain the scattering coefficients of the samples, ballistic transmission 

measurements were done and Mie theory was used . For this, the scattered light was 

incident on to a visible femtowatt photoreceiver (New Focus, Inc.) through a 150 micron 

pinhole. It was assumed that the absorption coefficient, aµ , was negligible compared to the 

scattering coefficient, sµ . Thus, the Beer-Lambert law of decay in propagating light 

intensity  

 ( )
0( ) s a zI z I e µ µ− +=   (4.2) 

changes to  

 0( ) s zI z I e µ−=   (4.3) 

giving the scattering coefficient as 

 

0ln
( )

s

I
I z
z

µ

 
 
 =   (4.4) 
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Here, 0I  is the incident intensity and ( )I z  is the intensity after the light travels a linear 

distance z  in the scattering medium. the reduced scattering coefficient, 'sµ  was calculated 

by assuming a scattering anisotropy of g=0.9 and 

 ' (1 )s s gµ µ= −  . (4.5) 

To obtain the speckle images (Fig 4.1), a CCD camera (Point grey, Dragonfly) was used. 

The images were collected near real-time at 200 frames per second using a firewire adapter 

(StarTech, Inc.). The scattering samples were placed on a movable base controlled by a 

picometer control pad (New Focus, Inc.). The samples were studied under speeds ranging 

from 0.33 to 0.98 mm/min. 

 

Fig 4.1. Experimental setup to capture speckle images from scattering samples consisting 

of solutions of hollow microspheres 
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For the fluid samples and empty cuvette samples, the speckles were recorded in the 

transmitted scattered light. For the aluminum block, the speckles were recorded in the 

diffusively reflected light. 

 

 

4.2.3 Locating Optical Vortices 
 

Once the speckle images were obtained, all further computations were done in a MATLAB 

environment. First, to remove noise artifacts, the images were smoothened by passing 

through a Gaussian image filter [5]. The smooth speckle images were then passed through 

a Hilbert filter to obtain their pseudo-phase map. A series of convolution operations were 

then performed on these pseudo-phase mappings to obtain the locations of phase 

singularities, or optical vortices [6]. (Fig 4.2) 
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Fig 4.2. (a) An obtained speckle frame (b) Its pseudophase representation (c) Location of 

vortices obtained from convolution operations on the pseudophase map. The blue circles 

represent positive vortices and red points indicate negative vortices. Reproduced with 

permission from [4]. 

4.2.4 Analyzing time-evolution of the Vortex fields 
 

Once the optical vortices in each of the speckle frames are located, these locations are 

stored in a three dimensional array, with one temporal and two spatial dimensions 

indicating the motion of the vortices in the 2-D frame with time. (Fig 4.3) In this way, trails 

of individual vortices were obtained.  
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Fig 4.3. Vortex trails obtained after stacking together the vortex locations from individual 

frames. The blue circles represent positive vortices and red points indicate negative 

vortices. Reproduced with permission from [4]. 

An algorithm previously used by Majumdar and Kirkpatrick [4] was followed to 

characterize the vortex trails. The three quantities in focus for each sample in this study 

were the average trail length (i.e. , the time for which each vortex lasted), the mobility (i.e., 

the average displacement of the center of the vortex distribution, per frame) and the charge 

separation (i.e., the average distance between the positive and negative centers, per frame). 

Mathematically,  a positive (negative) center  ( , )c cX Y  of a frame is defined as the mean 

location of all the positive (negative) vortices in the frame 
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where ( , )i ix y   is the coordinates of the thi  vortex in the frame and n is the total number 

of positive (negative) vortices in the frame. The overall center of the frame ( , )co coX Y  is 

then the weighed mean location of the positive and negative centers: 

  

 ; ,p cp n cn p cp n cn
co co

p n p n

n X n X n Y n Y
X Y

n n n n
+ +

= =
+ +

  (4.7) 

where ( , )cp cpX Y   is the location of the positive center and ( , )cn cnX Y  is the location of the 

negative center; pn  and nn  represent the number of positive and negative vortices in the 

frame, respectively.  We defined the mobility, M , for each type of vortex as the mean 

distance moved by their center, per frame: 

 1 2 1 2

2

1 ( ) ( ) ,
1

N
i i i i

co co co co
i

M X X Y Y
N

− −

=

= − + −
− ∑   (4.8) 

where ( ),i i
co coX Y  is the location of the overall vortex center in the thi  frame. N is the total 

number of frames. 

Additionally, the distance between the positive and negative centers of each the frame was 

studied. We have termed this distance as the charge separation, G. To analyze this, 
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standardized metrics SD1 and SD2 for the data set are measured with the following 

definitions (refer to chapter 2 for derivation and details)  

 

( ){ }

2
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1

1
2

1 11 ( ( 1) ( ))
2 2

2 2 1  

;

,

SD Var G i G i

SD Var SDG

= − −

= −

  (4.9) 

where Var(G) stands for the variance of the data series G and G(i) is the ith element of the 

series. From this, the ellipticity, e  , of the data is measured as 

 2 .
1

SDe
SD

=   (4.10) 

  

 

4.3 Results and discussion 
 

4.3.1 Characterization of scattering samples 
 

The manufacturer of the hollow glass spheres used in these experiments indicates that the 

spheres had a range of dimeters from 9 to 11 microns. A ballistic transmission experiment 

was set up to identify the diameter of spheres for which the solutions can be assumed to be 

monodisperse. The ratio of intensity passing through five different concentration of spheres 

was measured and Beer-Lambert law was applied to estimate the reduced scattering 

coefficients. 



www.manaraa.com

70 
 

 

Fig 4.4. The reduced scattering coefficients calculated using Beer-Lambert law are 

indicated by dots (error bars indicate one standard deviation). The solid blue line 

represents the best linear fit. The broken red line indicates the theoretical fit for spheres 

of diameter 9.8 microns. 

On applying a linear fit to the obtained values, it was found that the best-fitting line has the 

equation 

 15.4401 0.014y x= +   (4.11) 

where y  is the reduced scattering coefficient per millimeter and x  is the concentration of 

spheres in mg/ml. This line is represented as the blue solid line in Fig 4.4. On using an 

online Mie scattering calculator [7], it was found that the scattering behavior was similar 

to that of a solution of spheres with uniform diameter of about 9.8 microns. 
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4.3.2 Effect of Temperature 
 

Measurements obtained at room temperature (296 K) and those when the samples were 

heated to a higher temperature (330 K) are compared in the following Table 4.1: 

 

Solution 

Concentration 

(mg/ml) 

Trail Lengths 

(No. of frames) 

Mobility (No. of 

pixels) 

Ellipticity in charge 

separation 

296 K 330 K 296 K 330 K 296 K 330 K 

0.060 17.136 5.761 14.498 32.817 2.788 1.554 

0.072 9.954 4.798 18.557 32.142 1.898 1.286 

0.077 10.550 3.660 20.120 39.407 2.720 1.459 

0.080 12.844 5.681 17.399 32.952 2.604 1.608 

0.092 24.245 3.637 11.189 54.340 4.734 1.379 

0.096 8.364 5.034 20.859 32.536 2.049 1.394 

0.120 8.243 4.931 22.866 31.152 1.697 1.469 

0.157 15.884 3.480 15.851 48.538 2.697 1.296 

 

Table 4.1. Changes in trail length, vortex mobility and the ellipticity in charge separation 

due to temperature 

As is evident from the table, a higher temperature results in trails lasting a shorter period 

of time, while the vortices in each frame become more mobile. Additionally, the charge 
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separation ellipticity is reduced at higher temperatures. These trends were observed for 

each of the concentrations studied. 

4.3.3 Effect of type of Motion 
 

In the above section, all samples were inside stationary cuvettes at all times. Thus, the only 

motion involved were the Brownian (disordered) motion of the scatterer spheres within the 

solution. We notice that even with the type of motion remaining the same, evolving speckle 

fields have variations in their properties. Thus, when comparing different types of motion, 

we need to account for the difference in motion within the same type. To achieve this, we 

introduce a “decorrelation factor” D  such that 

 100 (1 )D = × −Γ   (4.12) 

where Γ  is the mean autocorrelation coefficient between the consecutive speckle frames 

obtained from the measurements on any particular sample. A higher value of D  for the 

same type of motion indicates a faster decorrelation of the speckle frames in a sample, and 

thus results in shorter trail lengths and higher mobilities. For instance, from the solutions 

examined in Table 1, that value of D  at 296 K was measured to be 0.462 0.237±  while 

that at 330 K was measured to be 5.694 3.019±  . 

With this reasoning, to obtain normalized traillengths, the measured traillengths were 

multiplied by a factor of D  to account for the rate of motion. The results are displayed in 

Fig 4.5(a). 
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(b) 

Fig 4.5. (a) Normalized traillengths and (b) normalized mobilities for three different 

systems: (A) Solutions of microspheres in stationary cuvettes (14 samples) , (B) Cuvettes 

translating without any solution (12 samples), (C) Solutions in translating cuvettes (12 

samples). Error bars represent 1 standard deviation. 

Similarly, to obtain the normalized vortex mobilities, the measured mobilities were divided 

by a factor of D  to account for the rate of motion. The results are displayed in Fig 4.5(b). 

Student’s t-test for difference of means was followed for checking statistically significant 

differences. It was found that both the trail lengths and mobilities in the translation of empty 

cuvettes were significantly different from the other two cases, but these two cases 

(solutions in stationary cuvettes and solutions in moving cuvettes) were not significantly 

different from each other.  
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4.3.4 A solid aluminum block- The case of minimal decorrelation 
 

When studying the evolution of vortex field in the speckle patterns obtained as a result of 

interference from a solid diffusively reflecting block, the idea of using the decorrelation 

factor as above cannot be applied. This is because we are looking at scattering form a single 

steady (and thus, non-decorrelating) surface. If measured, the autocorrelation coefficient 

between consecutive speckle frames is 0.9999Γ > , thus resulting in extremely small 

values of D  below 0.01. An example of the vortex trails obtained is shown in Fig 4.6. 

 

Fig 4.6. Vortex trails obtained from a piece of aluminum block translating at 0.33 

mm/min. For simplicity, only 300 frames are shown. The images were captured at 200 

fps. The blue circles represent positive vortices and red points indicate negative vortices. 
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As can be noticed, the vortex motion reflect the linear shift of the scattering source quite 

closely, as the source undergoes negligible decorrelation. On close inspection, the point of 

pair production and annihilation of the optical vortices can also be noticed, as displayed in 

Fig 4.7. 
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(a) 
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(b) 

Fig 4.7. The points of (a) pair production and (b) annihilation of certain vortex pairs 

indicated by arrows. The blue circles represent positive vortices and red points indicate 

negative vortices. 

4.4 Conclusion 

Small particles such as the hollow glass spheres used in these experiments, when suspended 

in a fluid, exhibit Brownian motion. Einstein’s studies using kinetic theory were the first 

mathematical detailing of these systems [8]. Advancements using Langevin’s equation and 
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the equipartition theory estimate the mean-squared speed 2v< >   of Brownian particles 

as 

21 1
2 2

m v kT< >= (4.13) 

where m  is the mass of the particle with absolute temperature T  and k  is the Boltzmann’s

constant [9]. From Eq. (4.13), it can estimated that increasing the temperature from 296 K 

to 330 K, as we have done, results in an approximate increase of 5.6% in particle speed. 

This increase in speed of scattering particles is reflected in the higher mobility of the 

resultant optical vortices, as well. It was also noticed that as the particle motion became 

more rapid, the ellipticity in the vortex charge separation reduced. The reduction in 

ellipticity values indicate a lowering of long-range correlations in the variables for which 

the ellipticity is measured [10]. A quickening of scatterer motion thus makes short-term 

variations in the vortex distribution more significant. 

As has been previously reported [4], a higher mobility of the vortices is typically associated 

with shorter trail lengths. This trend continues with the normalized variables in section 

4.3.3. Fluid samples exhibiting Brownian motion provide a source to study disordered 

motion. On the other extreme lies completely ordered motion. Such a motion exhibits a 

Gaussian decorrelation relation between frames [11].  In our experiments, ordered motion 

is represented by empty cuvettes translating at a uniform speed. Most biophysical 

phenomena, however, exhibit dynamics in between the completely ordered and completely 

disordered regimes. To mimic this, we introduced the microsphere solutions to the above 

case of translating cuvettes. Thus, we have the Brownian motion within the solutions added 

to the ordered motion of the bulk of the solution and the cuvette. Our vortex analysis clearly 
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indicates statistically significant differences between the purely disordered and purely 

ordered regimes, as well as between the purely ordered and partially disordered (mixed) 

regimes. No significant difference was found between the purely disordered and the mixed 

regimes. 

4.5 Summary 

In this paper, ways to analyze optical vortex fields to distinguish the dynamics of the 

underlying scatterers are presented. Vortices were detected in speckle fields obtained from 

scattering systems act as proxies to actual biophysical systems. Some of the results reflect 

similar studies in computer-simulated speckle fields reported previously [4]. An aspect for 

future investigation could be to study the effects of concentration of scatterers, which we 

haven’t touched as we were more focused to look into Brownian motion as a single entity 

to be compared with other types of motions. Another addition could be to vary the relative 

weights of ordered and disordered motions and establish a boundary where vortex analysis 

can distinguish between such mixed dynamics and purely Brownian dynamics. We 

conclude by noting that the methods and analysis presented here could potentially improve 

our current understanding of light-matter interaction, and expand the field of singular 

optics.  
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5 Other applications of Poincaré Analysis 
 

In chapter 2, we noted that Poincaŕe analysis can be applied to any data series that can be 

represented in a one-dimensional array. In the chapters 3 and 4, we have seen the application of 

Poincaré descriptors to analyze the charge separation in dynamic optical vortex distributions. In 

this chapter, we look into some other aspects of speckle fields where these descriptors, as well as 

other parameters described in chapter 2, can be applied. Excerpts of this chapter have been taken, 

with permission, from “Poincaré descriptors of long and short- range correlations in the spatial and 

temporal fluctuations of coherently scattered light” by A. Majumdar and S.J. Kirkpatrick, published 

in the Proceedings of SPIE in 2018. Excerpts of this chapter have also been taken, with permission, 

from “Ellipticity imaging for visualizing and quantifying long and short range correlations in laser 

speckle data II: phantom and animal studies” by Majumdar et al., published in the Proceedings of 

SPIE in 2019. The letter of permission for both of them is attached in Appendix A.1. Excerpts of 

this chapter have also been taken, with permission, from “Spatial Poincaré Plots as Descriptors of 

Speckle Pattern Second-Order Statistics” by A. Majumdar and S.J. Kirkpatrick, published in the 

Journal of Biomedical Photonics and Engineering in 2017. The letter of permission is attached in 

Appendix A.2. The calculations in this chapter have been performed in a MATLAB environment 

using the code in Appendices B.3, B.4 and B.5. 

5.1 Speckle Size measurement 
 

5.1.1 Power Spectral Density (PSD) function 
 

Laser speckle patterns are obtained as a result of the random interference of coherent light 

scattering from a rough surface or a scattering volume [1]. Speckle patterns have been used 

extensively for a variety of metrology applications including surface roughness [2], strain 
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measurement [3] and fluid flow [4-8]. The second-order statistics of a speckle pattern 

provide a description of the spatial structure of the pattern, with the minimum size of a 

speckle, or the minimum correlation length of the pattern, being an important parameter in 

the characterization of this structure [9]. It has been noted in the literature that proper spatial 

sampling of the intensity of the scattered field is an important experimental consideration 

in speckle-based metrology applications [10]. In order to meet the spatial Nyquist criteria, 

the minimum speckle size of the measured intensity pattern should be at least two pixels 

[8]. Goodman [9] introduced the M parameter which can be interpreted as the number of 

speckles per pixel and may be used as a means of quantifying this.  In practice, the 

minimum speckle size has traditionally been estimated in two dimensions in terms of the 

width of the power spectral density (PSD) function of the measured intensity distribution 

[9] 

 2= ℑ| { ( , )}|PSD I x y   (5.1) 

where  ℑ  represents the Fourier Transform operator and ( , )I x y   is the distribution of the 

measured intensity of the speckle field. The typical plot of the PSD function is shown in 

Fig 5.1. The minimum speckle size,Λ , is estimated from this distribution as [8,11] 

 2
Λ =

PSD

D
W

  (5.2) 

where D is the width of the speckle image and WPSD is the width of the PSD function. 
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Fig 5.1. The Power Spectral Density (PSD) of a frame of 512 X 512 pixels in a speckle 

field. It can be seen that the PSD width is half the overall width of the field, which in 

accordance with (1) gives a speckle size of 4 pixels. For easy visualization, concentric 

circles corresponding to each minimum speckle size from 2 to 10 pixels is drawn on the 

PSD. The outermost circle corresponds to size=2 pixels and each subsequent circle 

inwards corresponds to an increase in size by 1 pixel. 

5.1.2 Review of relevant Poincaré analysis details 
 

A Poincaré plot is a statistical tool to study variations, or, alternatively, self-similarity in a 

quantity. In these plots, sequential measures of the quantity of interest are plotted against 

the previous measures. Thus, the 𝑖𝑖𝑡𝑡ℎ measure is plotted against the (𝑖𝑖 + 1)𝑡𝑡ℎ measure, for 

i=1,2...N-1, where N is the total number of measurements available in the data. In 
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biomedical signal processing, these plots have been used extensively to study heart rate 

variability over time [12].  Specific standard descriptors 1SD  and 2SD can be obtained from 

the data. These descriptors are mathematically defined as  
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where  1+nX  and nX  represent the current and previous measures, respectively and ( )Var X  

stands for the variance in the measurement of X. As can be seen from Eq. (3), SD1 is a 

measure of the standard deviation of the differences in successive data points.  This is 

commonly known as the standard deviation in successive differences in statistics [12]. 

Thus, the descriptor SD1 represents the short-term variations in the data [12]. Also, from 

the expression for SD2, it is noted that this represents the difference between the overall 

variations in the data, Var(X), and the variations attributed to short-term differences, SD1. 

Thus, the descriptor SD2 effectively represents the long-term variations in the data. By 

these definitions, the ratio SD2/SD1 is an indication of the prominence of long-term 

variations in the data, compared to short-term variations [12]. We have referred to this ratio 

as the ellipticity e of the data. We have chosen this nomenclature, as the descriptors SD2 

and SD1 are the semi-major and semi-minor axes, respectively, of an ellipse commonly 

used to study information from these plots [12] (Fig 5.2).  
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Fig. 5.2. A typical Poincaré plot. Any particular point represents a data point plotted in 

vertical axis against the previous data point in the horizontal axis. 

As demonstrated by Brennan, Palaniswami and Kamen [12], and also described in chapter 

2, for uncorrelated data, this ratio is unity.  The larger the deviation of this ratio is from 

unity, the greater the correlation among the data points. In our research, we have made use 

of this ability of the Poincaré plot descriptors to indicate whether or not the intensity in 

neighboring pixels is correlated, which ultimately reflects the minimum speckle size in the 

pattern. 
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5.1.3 Necessary modifications for speckle size calculations 
 

In order to take advantage of the ability or Poincaré plots to demonstrate correlation 

between neighboring data points, the traditional definition of Poincaré plot descriptors 

were modified for the purposes of this study. Instead of plotting every (𝑖𝑖 +

1)𝑡𝑡ℎ measurement against the 𝑖𝑖𝑡𝑡ℎ  measurement, we introduced a coarsing factor 𝑘𝑘, such 

that every (𝑖𝑖 + 𝑘𝑘)𝑡𝑡ℎ measurement was plotted against the 𝑖𝑖𝑡𝑡ℎ measurement, for 𝑖𝑖 = 

1,2,…N-k , with N being the number of data points (pixels) available. In previous 

publications [12], similar descriptors have been referred to as lag m Poincaré descriptors.  

Thus, similar to Eq. 5.3, the modified descriptors are defined as 
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5.1.4 Ellipticity in simulated speckle fields and comparison with PSD 

    

Speckle fields were generated using an algorithm as described by Duncan and Kirkpatrick 

[13]. Using this algorithm, we generated speckle patterns with known minimum speckle 

sizes varying between 2 and 9 pixels.  The intensity distribution of individual rows in these 

speckle patterns was examined. It has been shown previously [8] that the intensity PSD 

width accurately gives the minimum speckle size input by the user while implementing this 

algorithm. Our objective herein was to use modified spatial Poincaré plot descriptors of the 

intensity distribution along a slice (single row) in the speckle pattern to indicate correlation 
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lengths along this row of speckles and ultimately describe the spatial structure (i.e, the 

minimum speckle size) of the speckle pattern. 

The ellipticity e of the obtained intensity distribution was measured for different coarsing 

factors. In all further discussion, the ellipticity calculated from the data while setting the 

coarsing factor as k  is denoted as ke . Thus, 2 / 1k k ke SD SD= .  The ellipticity decreased 

steadily with an increase in the coarsing factor, until it reached a value approaching unity 

for all speckle sizes. As mentioned above, this is the point where the distribution is seen to 

be uncorrelated. By further increasing the coarsing factor beyond this point, the ellipticity 

exhibited small oscillations, but remained approximately equal to 1.0. 

 

 

 

 

 

 

(a) 
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(b) 

Fig. 5.3. Poincaré plot of intensity for minimum speckle size of 5 pixels. (a) When the 

coarsing factor was 1 pixel, we obtained SD1 = 0.0344 and SD2= 0.1490, giving an 

ellipticity factor of 4.3314 (b) When the coarsing factor was 6 pixels, we obtained SD1 = 

0.1105 and SD2= 0.1058, giving an ellipticity factor of 0.9575. Thus, the observed 

correlation is lost at high coarsing factors. 
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(a) 

 

(b) 

Fig 5.4. Dependence of measured ellipticity on the coarsing factor for minimum speckle 

sizes of (a) 2 to 5 pixels (b) 6 to 9 pixels. It can be noted that the ellipticity value tends to 

asymptotically settle around unity, for each of the speckle sizes. We call this asymptotic 

regime as the uncorrelated regime. 
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We observed that on steadily increasing the coarsing factor for the calculation of the 

standard descriptors, the correlation seen in the intensity data was lost when the coarsing 

factor equals or exceeds the pre-determined minimum speckle size. For example, by 

examining the case where the minimum speckle size in the simulated speckle pattern was 

5 pixels in the data of Fig 5.4, it was observed that as long as the coarsing factor was smaller 

than 5 pixels, the descriptors were able to detect a correlation between the observed 

intensity values. This results in ellipticity values greater than unity. We refer to this region 

as the correlated regime. However, when the coarsing factor became larger than 5 pixels, 

the intensity values detected were seen to be uncorrelated. This resulted in ellipticity values 

close to unity. We refer to this region as the uncorrelated regime. The minimum speckle 

size can thus be viewed as the coarsing factor at the transition point between the correlated 

and uncorrelated regimes. 

It is clear from the above discussion that a correlation exists between the minimum speckle 

size in the speckle pattern and the value of ellipticity at a particular coarsing factor. We 

observed that for any particular coarsing factor, larger speckle sizes resulted in higher 

values of ellipticity, unless we are in the uncorrelated regime, in which case 1.0ke ≈ . The 

characteristic feature of the uncorrelated regime is that the values of ellipticity lie very 

close to unity and do not continue to decrease monotonically with an increase in coarsing 

factor.   Thus, speckle sizes from multiple speckle fields can be compared by comparing 

their ellipticity in their intensity distribution, using a low coarsing factor (such as k =1, 

which lies in correlated regime irrespective of the speckle size).   
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In fact, this ability of the spatial Poincaré plots to distinguish between speckle sizes at low 

coarsing factors gains significance, especially at larger minimum speckle sizes. Figures 

5.5(a) and 5.5(b) demonstrate the challenge with using the PSD for comparing speckle 

patterns with minimum speckle sizes of 9 and 10 pixels, respectively. According to Eq. 

(5.2), the width of the PSD function for the patterns on a 512 X 512 window, are roughly 

114 and 102 pixels, respectively. This translates to the radius of the functions to be 57 and 

51 pixels. This difference of 6 pixels on a field of 512 X 512 pixels is more challenging to 

ascertain, compared to the approach using spatial Poincaré plots, as demonstrated in Fig 

5.5(c). 

 

(a) 
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(c) 

Fig. 5.5. Comparison of ease of detecting differences in systems with large minimum 

speckle sizes: PSD for a minimum speckle size of (a) 9 pixels and (b) 10 pixels compared 

to the (c) ellipticity values for the same minimum speckle sizes. 

 

For a coarsing factor of k=1, which lies in the correlated regime for all speckle sizes greater 

than 1 pixel, the calculated values of ek for the speckle patterns of 9 and 10 pixels minimum 

speckle sizes were 7.63 and 8.41 respectively. For k=2, these values dropped to 3.80 and 

4.18, respectively. Thus, for large speckles, calculating the ellipticity value using a 

coursing factor of 1 pixel, for example, provides a method of easier comparison than the 

visual determination of PSD width. 

The decrease in ellipticity values with increasing coarsing factor roughly follows an inverse 

power relation 
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 m C

Be A
m

= +   (5.5) 

where  me  is the ellipticity measured at coarsing factor m  . A, B and C are constants. This 

is further demonstrated in the work that follows. 

We next calculated the ellipticity values along the time-axis. In other words, the intensity 

variation of the same pixel was recorded as the speckle fields evolved through 1000 frames. 

The calculated ellipticity values from this data series is plotted in Fig 5.6 for different 

decorrelation rates. These decorrelation rates are defined in terms of the number of frames 

it takes for the overall speckle correlation to reduce to a value of 1/e. Four different rates 

were considered, with their correlation factor reducing to the above value in 211, 106, 76 

and 55 frames, during the 1000-frame simulation. These decorrelation rates shall be called 

R1, R2, R3 and R4 respectively, for the rest of this discussion. This is also the order of the 

rate of decorrelation, from the slowest to the fastest. All the speckle frames were simulated 

with a minimum speckle size of 3 pixels. Smooth curve-fitting plots of Eq. (5.5) was also 

done on these values and the obtained values for the constants in the equation are provided. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig 5.6. Ellipticity values plotted against the coarsing factor at different rates of 

decorrelation, along with smooth curve-fitting in accordance with Eq. (5.5). The 

constants A,B and C, respectively for each of the decorrelation rates are: (a) R1: 

0.9026,1.7601,2.0644; (b) R2: 0.8555,1.7669,2.0302; (c) R3: 0.8564,1.6859,2.1421; (d) 

R4: 0.8629,1.6197,2.1873 

It is noted that the variation of ellipticity with coarsing factor follows a similar pattern in 

the temporal direction above, as it does in the spatial directions. A more interesting 

observation is obtained on comparing the ellipticity values for different rates of 

decorrelation (Fig 5.7). 
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Fig 5.7. Obtained ellipticity curve when Eq (5.5) is plotted for each of the decorrelation 

rates, with the constants A, B and C as mentioned in Fig 5.6. 

Analytically, we can calculate the values of em at any coarsing factor from Eq (5.5). For 

example, for m=1, i.e. the case of standard Poincaré descriptors, for each rate of 

decorrelation. In that case, the values are simply ‘A+B’. We note that these equal 2.6627, 

2.6224, 2.5423 and 2.4821 for R1, R2, R3 and R4, respectively. It can be observed that, 

for any coarsing factor, the ellipticity decreased as the rate of decorrelation increased. This 

result can be used to quantify motion and thus might provide new insights into speckle 

imaging techniques. 

Next, we considered the tine-averaging of speckle patterns. For this study, we generated a 

series of 6000 speckle frames, each frame being 512X512 pixels. This was followed by the 

addition of these speckle patterns, frame by frame. We noted that as expected from theory 
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[14], the contrast of the resultant speckle pattern reduced as more frames were added (Fig 

5.8). 

 

Fig 5.8. Reduction in speckle contrast of the resultant frame, as the number of frames 

added to obtain it increased 

This decrease in contrast can be visually noticed from the resultant pattern. Fig 5.9 

demonstrates the resultant patterns obtained, as well as the probability density function of 

the intensity of the 512X512 pixels, for some of the time-averaged stages of the speckle 

pattern.  
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(b) 

 

(c) 

 

(d) 



www.manaraa.com

102 

(e) 

(f)
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(g) 

 

(h) 

Fig 5.9(A) 
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(c)
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(e) 

(f)
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(g) 

(h) 

Fig 5.9(B) 

Fig 5.9. The (A) speckle patterns and (B) intensity probabiity distribution functions for 

the resultant frame, obtained from the addition of (a)1 (b)10 (c)100 (d)500 (e)1000 

(f)2000 (g)3000 and (h)6000 individual speckle patterns. The speckle contrast of each of

the patterns in Fig 5.9(A) are, in order from (a) to (h): 0.9927, 0.9895, 0.8392, 0.463,

0.3343, 0.2415, 0.2002 and 0.1411 

The corresponding power spectral density (PSD) plots are in Fig 5.10. 
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(a) 

(b) 
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(d)
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(e) 
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(g) 
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(h) 

Fig 5.10. (a)-(h) Power spectral density function plotted for the corresponding speckle 

patterns of Fig 5.9(A). 

 

It can be noted that the clarity of the width of the PSD function reduces as the speckle 

contrast reduces, with the addition of more speckle frames. While the initial images (up to 

1000 frame addition) clearly indicate the minimum speckle size of 4 pixels, the latter mages 

do not have a similar well-defined boundary. In such a situation, the application of Poincaré 

descriptors to estimate the speckle size was found to be an useful alternative. The ellipticity 

factors measured from the above patterns are noted in Table 5.1. 

 



www.manaraa.com

113 

Table 5.1. Ellipticity values for time-averaged speckle patterns do not vary with the 

number of patterns that are used in the averaging process. These values are typical of a 

speckle pattern with a minimum speckle size of 4 pixels. 

As can be seen, the values do not undergo any major change with a depreciation of the 

speckle contrast. Thus, these descriptors provide a robust method to estimate the spatial 

structure, even if the recorded intensity is time-averaged. 

Finally, we discuss the ability of Poincaré descriptors to indicate the existence of elongated 

speckles. These speckle patterns have different correlation lengths in different directions. 

Fig 5.11 demonstrates a couple of examples of such patterns. 

Coarsing 

Factor 

No. of Speckle fields added to obtain the resultant frame 

1 10 100 500 1000 2000 3000 6000 

1 3.58 3.56 3.56 3.55 3.57 3.54 3.54 3.56 

2 1.78 1.76 1.77 1.76 1.77 1.76 1.75 1.77 

3 1.22 1.21 1.21 1.21 1.22 1.21 1.21 1.21 

4 1.03 1.02 1.02 1.02 1.02 1.02 1.01 1.02 

5 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99 

6 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 
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(a) 

 

(b) 

Fig 5.11. Elongated speckle patterns: (a) correlation lengths in x- and y- directions are 2 

and 8 pixels, respectively; (b) correlation lengths in x- and y- directions are 5 and 2 

pixels, respectively 
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The power spectral density functions of these patterns are plotted in Fig 5.12 and their 

ellipticity measurements are displayed in Table 5.2. 

(a)
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(b) 

Fig 5.12. Power spectral density plots of the corresponding speckle patterns shown in Fig 

5.11 

 

 

Coarsing 

Factor 

Figs 5.11(a) and 5.12(a) Figs 5.11(b) and 5.12(b) 

Row Column Row Column 

1 1.78 7.16 4.47 1.77 

2 1.02 3.56 2.22 1.02 

3 1.00 2.36 1.48 1.01 

4 0.99 1.77 1.16 1.00 
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5 1.00 1.42 1.02 1.00 

6 1.00 1.21 0.99 1.00 

7 0.99 1.08 1.00 1.00 

8 0.99 1.02 1.01 1.00 

9 0.99 0.99 1.01 1.00 

10 0.99 0.99 1.00 0.99 

Table 5.2. Ellipticity values of the speckle patterns represented by Fig 5.11, with the 

corresponding PSDs in Fig 5.12. As the speckles have different dimensions along the 

rows and columns, their ellipticities in the two directions are different. 

As can be seen, the PSD functions of each of the speckle patterns reflect the varied sizes 

in different directions. As a result, the plots are elliptical instead of circular, which was the 

case in all previous studies. Equivalent results are obtained when the ellipticities are 

measured. So far, the ellipticity values were statistically indistinguishable in the two 

dimensions, as the speckle patterns had the same correlation length in both. However, 

elongated speckles necessitate that the measurements be done in each direction separately. 

The measured values match the expected (from Eq. (5.5) and previous measurements on 

symmetrical speckles) values for the speckle size in each direction of each of two speckle 

patterns, i.e., 2,8,5 and 2 pixels for the 2nd, 3rd, 4th and 5th columns of the table, respectively. 
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5.1.5 Analysis    
 
It is worth recalling that the definition of speckle size has a statistical foundation. It is 

approximated as the square root of the coherence area of the intensity pattern, which is a 

function of the covariance of the intensity distribution [9]. As the geometry of this 

coherence is fundamentally two-dimensional, the process of considering its square root 

only gives an estimate of the one-dimensional width of the speckle. For small speckles, the 

variation of pixel intensity in both dimensions is prominent. As such, defining a boundary 

between which pixels are to be considered “within the speckle” and which are to be 

considered “outside” is a relatively straightforward task. However, as the size of the 

speckles increases, the variation in intensity across the pixels becomes more gradual (i.e., 

the change extends over more pixels). The stark contrast between neighboring pixels 

diminishes and thus, the boundaries between individual speckles becomes spatially less 

distinct.  

In conclusion, the use of modified Poincaré plot descriptors has been demonstrated as an 

approach for describing the spatial structure in the measured intensity of a speckle pattern.  

The Poincaré analysis as presented above, provides a useful approach for estimating the 

minimum speckle size in a speckle pattern.  A comparison was made with the results using 

an alternative approach, that is, the use of the power spectral density function for the 

calculation of minimum speckle size. The concept of employing a cutoff ellipticity of 

1.0e =  to identify the minimum sampled speckle size was also introduced.  Additionally, 
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it was shown that for large speckles, the present approach has some advantages over the 

commonly employed approach of assessing the width of the PSD of the speckle pattern.   

Additionally, this idea has been expanded to study speckle patterns with varying temporal 

distances. Also, the earlier process of using data from individual row/column of pixels has 

been expanded to include the data from the entire speckle field. This eliminates the risk of 

selecting a row or column of undeveloped speckle pattern, when the methods are applied 

to imaging speckles. The effects of time-averaging on the measurements were also 

explored. A key observation here was that despite the lowering of contrast upon frame-by-

frame addition of the patterns, the Poincaré descriptors were able to indicate the minimum 

speckle size in individual patterns. As contrast values are an indication of speed, this above 

result, along with those obtained from temporal coarsing, might provide a basis to quantify 

motion and concurrently study the spatial structure of the scatterers involved. This could 

potentially be an improvement over the current methods of speckle contrast imaging. 

Finally, in addition to providing a method for estimating the minimum speckle size in a 

speckle pattern, spatial Poincaré plots also provide information about the relative 

contributions of short-term and long-term variations in the spatial structure of the measured 

intensity distribution of scattered coherent fields. 



www.manaraa.com

120 
 

5.2 Phantom and Animal studies        
 
5.2.1 Mean Squared Successive Differences (MSSD)     
 
In addition to the definitions of standard Poincaré parameters as mentioned in section 5.1.2 

(and not the modified definitions of section 5.1.3), we use the Mean Squared Successive 

Differences (MSSD) of a series of variables, introduced in chapter 2, and defined as 
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− ∑   (5.6) 

where N is the total number of elements in the series X. In this section, we first look at the 

applications of Poincaré descriptors and MSSD to study fluid motion in a phantom sample. 

This is followed by imaging of an anesthetized mouse using these descriptors.   

 

 

5.2.2 Fluid Phantoms 
 

5.2.2.1 Preparation 
 

A phantom flow system was constructed using a glass capillary (1 mm outside diameter 

and 100 μm internal diameter) connected to rubber tubing and a variable height reservoir 

used to contain the phantom fluid and to alter the velocity of the fluid inside the capillary 

by changing its height.  The phantom fluid was a suspension of polystyrene microspheres 

with a scattering coefficient of 54 cm-1 at 650 nm, the wavelength of the diode laser used 

for the imaging.  The image magnification was approximately 0.1.  The glass capillary was 

illuminated at a slight off-normal angle and the backscattered speckle patterns were 
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observed normally at 150 frames per second.  A total of 256 speckle images were obtained 

for each different speed of fluid flow.. Each successive speed increment (decrement) was 

performed by raising (lowering) the pressure head of the fluid source by 0.5 mm. The 

obtained images were of size 1024 X 1024 pixels. Once the images were obtained, the 

Poincaré descriptors and MSSD were calculated along the temporal dimension for each 

pixel. The temporal ellipticity was also obtained from these calculations, for each pixel. 

5.2.2.2 Results 

A sample speckle image obtained from the phantoms is shown in Fig 5.13. 

Fig 5.13. Speckle image from the fluid phantoms. The outline of the tube carrying the 

fluid is clearly visible. 

The calculated values of ellipticity and MSSD for each pixel along the temporal axis 

produced a spatial distribution as shown in Fig 5.14. 
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(a) 

 

(b) 

Fig 5.14 (a) Ellipticity and (b) MSSD values obtained from the speckle intensities 

of 256 temporally varying frames of a flowing fluid phantom 
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The mean ellipticity and MSSD along a horizontal row of pixels within the tube carrying 

the phantom were then calculated for each speed. The obtained values are shown in Fig 

5.15 and Fig 5.16. 

 

 

Fig 5.15. Mean ellipticity along a row of pixels inside the phantom samples 

 

Fig 5.16.  Mean MSSD along a row of pixels inside the phantom samples 
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It was observed that the ellipticity variation with fluid speed best fit an inverse power law, 

 1.8031

291761.0471e
v

= +   (5.7) 

as shown in Fig 5.17. Here, e represents the ellipticity in speckle intensity and v represents 

the fluid speed.  

 

Fig 5.17. Inverse power law of Eq. (5.7) fit onto the ellipticity values of Fig 5.15. 

 

Furthermore, the MSSD values were observed to feature two distinct trends- at lower fluid 

speeds (up to about 600 microns/second), they increased linearly in close accordance with 

Eq. (5.8) 

 344.94 2.943MSSD v= − +   (5.8) 

while at higher speeds the decreased by the power law 
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0.5951406 20.4549( 600)MSSD v= − −  (5.9) 

These expressions are fit into the MSSD data as shown in Fig 5.18. 

Fig 5.18. At low fluid speeds of up to 600 microns/second, the MSSD values of speckle 

intensities closely represent Eq. (5.8), while they represent Eq. (5.9) at higher speeds. 

We have previously (section 5.1.4) reported the inverse power law variation in ellipticity 

in speckle field intensity. The falling of ellipticity to values close to 1.0 represents the 

regime where the long-range (represented by SD2) and short-range (represented by SD1) 

correlations reach values close each other. We have previously used the term “uncorrelated 

regime” for this region. The possible factor in this case is that at high speeds, two 

consecutive speckle frames captured by our imaging system are sufficiently different from 

each other that their correlation is not distinguishable from randomly picked speckle frames 

in the series. However, at lower speeds, multiple consecutive frames have a higher 

correlation among themselves compared to random frames, as demonstrated by a higher 
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ellipticity (which, in turn indicates a significant long-range correlation values given by 

SD2). This limitation of the imaging system is perhaps better demonstrated by the distinct 

change in the trend of the MSSD values. MSSD values represent the extent of variation in 

consecutive speckle frames. At the speeds up to about 600 microns/second, we clearly 

notice that the observed values indicate an increasing variation in consecutive speckle 

frame intensities, with increasing speeds. This is an expected observation as the increase 

in speed results in higher motion of the fluid between frames. However, at speeds above 

600 microns/second, the speckles obtained by the imaging system represent random motion 

more closely as the speeds keep increasing.  

This analysis, however, does indicate that when the ellipticity measurements show that the 

dynamics of a system are in the uncorrelated regime, MSSD measurements might be a 

better method to distinguish speeds. We now look at applying these measurement 

techniques to measure flow in animal tissues. 

5.2.3 Animal Tissue 

5.2.3.1 Preparation 

Flow in cranial vessels were imaged using the EI approach.  Mice were anesthetized and a 

cranial window opened in the skull.  All animal procedures were reviewed and approved 

by the Institutional Review Board.  Matching sets of image sequences were made on the 

mice using the same experimental set-up as described above.  Coherent image sequences 

255 frames long were taken on the mice both prior to and subsequent to the administration 

of acetylcholine (0.3 μg/kg) via intravascular (tail) infusion.  Acetylcholine is known to 
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have a strong and relatively long-lasting effect of altering blood flow and perfusion.  The 

dose of acetylcholine used lowered the systemic blood pressure and also lowered the heart 

rate, thus reducing blood flow systemically. 

5.2.3.2 Results 

Similar to the section 5.2.2.2, the spatial distribution of ellipticity and MSSD values were 

obtained for the entire image field (Fig 5.19). 

(a)
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(b) 

Fig 5.19. (a) Ellipticity and (b) MSSD values obtained from the speckle intensities of 256 

temporally varying frames of an anesthetized mouse tissue. Flow calculations along the 

red line (column #400) are demonstrated in the text. 

Ito calculate the flow speed inside the large blood vessel in Fig 5.19, we picked the speckle 

distribution along column # 400. Here, we hypothesize that as the imaging settings were 

kept the same as that for the phantom samples, we can use the mathematical models 

obtained there for estimating the fluid speeds in the animal samples. The ellipticity value 

calculated along this column before drug application was 1.02 and after application was 

1.04, indicating that the flow is in the uncorrelated regime for our setup. Thus, we use the 

MSSD model from Eq. (6). MSSD values changed from 120.78 to 365.19 on drug 

application. This indicates a reduction in speed from 1652.3 μm/s to 1338.2 μm/s.  
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Similar calculations were done on column # 450 of the region in Fig 5.20. 

 

 

 

Fig 5.20. Ellipticity values obtained from an animal sample. Flow calculations along the 

red line (column # 450) are demonstrated in the text. 

An increase in MSSD from 177.60 to 274.39 along this column, indicates a reduction in 

flow speed from 1584.7 μm/s to 1449.7 μm/s on drug application.  

We also noticed that some additional features of the region of interest become visible 

through imaging the ellipticity, compared to imaging the temporal contrast of the dynamic 

sample. This is demonstrated in Figs 5.21 and5.22. 
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(b)
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Fig 5.21. (a) Ellipticity image of the region from Fig 5.19 and (b) Temporal contrast 

image of the same region. The red arrows in (a) indicate features that are not visible in 

(b). 

(a)
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(b) 

Fig 5.22. (a) Ellipticity image of the region from Fig 5.20 and (b) Temporal contrast 

image of the same region. The red arrows in (a) indicate features that are not visible in 

(b). 

We would like to re-emphasize here that the ellipticity calculations treat short- and long-

range variations separately. As a result, some of the lesser prominent flow patterns (and in 

extension, likely blood vessels), which might cause very short-range contributions to the 

overall variations, might be highlighted. 

5.2.4 Analysis 

We have presented new approaches to look into dynamic fluid motion in this paper. Fluid 

phantoms were first analyzed to arrive at mathematical models for measuring speed using 

two statistical parameters, namely the ellipticity of speckle intensity distributions and the 

mean squared successive differences (MSSD) in these distributions. These models were 
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then applied to estimate fluid speed in animal tissue samples. A comparison between the 

observed features from the ellipticity measurement and the more traditionally used contrast 

measurements was also drawn. It was noted that ellipticity measurements helped in 

highlighting certain features which aren’t visible in contrast measurements. 

The limitations of ellipticity measurements were observed at high fluid speeds. To a certain 

extent, these limitations are compensated by using the MSSD measurements for 

calculations, instead. It is speculated that capturing the speckle images at a faster frame 

rate might help in resolving these limitations. Moreover, modifications to our analysis can 

be done to look at the parameters SD1 and/or SD2 separately, to see if they provide 

additional information about the dynamics. In conclusion, the methods presented here 

appear to be extremely and further research in these approaches might open avenues for 

new imaging technologies. 

5.3 Summary 

It is demonstrated that the use of spatial Poincaré plots provides an efficient means to 

describe short and long-range correlations in the spatial structure of the measured intensity 

distribution of scattered coherent fields. The intensity distribution over a row of pixels in 

single frames of speckle fields with varying speckle sizes was considered. Statistical 

descriptors from the spatial Poincaré plots for these intensity data with variable lags were 

used to estimate the short and long-term variations in the measured intensities, and from 

these descriptors, the minimum speckle size in the speckle patterns was estimated. This 
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approach yielded similar results for speckle size estimates as the more standard method of 

calculating the power spectral density of the intensity pattern and simultaneously provided 

information on the relative contributions of short-term and long-term variations in the 

measured intensity to the spatial structure of the scattered fields. The cases of time-

averaged speckle patterns and elongated speckles were looked at. 

Additionally, alternative approaches to use dynamic laser speckle data to quantify 

biophysical dynamics including ordered flows and random motions were presented. These 

yield images that superficially resemble traditional laser speckle contrast images. However, 

instead of relying on the statistics of the local time integrated intensity values calculated 

over temporal and sliding spatial windows as is done in LSCI to create images, these 

approaches directly yield images that quantify the relative dominance of long-range 

correlations in the temporal dimension of a series of speckle patterns to the short-range 

correlations in the same dimension. They rely on a Poincaré analysis of the speckle data 

which yields metrics that statistically describe both the short-terms variations in the 

temporal speckle intensity (i.e., the standard deviation in successive differences) and also 

the corresponding long term variations. 
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Conclusion 

In chapter 1, the presence of optical vortices in Gaussian beams is mathematically 

explained. It is discussed that these vortices do not need special circumstances to be 

present, and occur by default. Some historical developments in the detection of these 

vortices were also reviewed. In chapter 2, the mathematical basis for Poincaré analysis was 

laid down. It was noted that most of this background is applicable to the analysis of any 

data series that can be represented in a one-dimensional array. Some discussion was 

provided for the special case when the data series under consideration is the intensity 

variation in a laser speckle field. 

Chapter 3 dealt with simulated speckle fields. These simulations considered three different 

modes of decorrelation: Gaussian mode generally associated with ordered dynamics; 

Lorentzian (or exponential) mode generally associated with Brownian dynamics; and a 

constant sequential autocorrelation for academic curiosity. For all the three modes, three 

different rates (quantified by the autocorrelation coefficient) of decorrelation were 

explored. Quantifiable properties, namely the average trail lengths, vortex displacement 

(or mobility) and the charge separation were introduced and measured. It was noted that 

the trail lengths and mobility were able to distinguish the different modes of decorrelation, 

and in extension, scatterer dynamics. It was further noted that a Poincaré analysis of the 

charge separation gives an estimate of the rate of dynamics. In chapter 4, similar 

measurements were performed for physical systems with varying dynamics. Purely ordered 

and purely Brownian motion, as well as superpositions with varying proportions of each 

of the extremes, were exhibited by microsphere solutions in de-ionized water. The 
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microspheres act as scattering elements, while water acts as the primary medium, thus 

creating an environment similar to biological tissues, as far as optics is concerned. 

Furthermore, vortices from a static scattering system were examined using the rough 

surface of a metal slab. The obtained results complemented those from simulated speckle 

fields. 

In chapter 5, further applications of Poincaré analysis in speckle fields were provided. It 

was demonstrated that, as a measure of correlation, Poincaré descriptors can be used to 

estimate speckle sizes. This holds even in case of heavy degradation of speckle contrast. 

Methods to use these descriptors to quantify flow in fluid phantoms as well as animal 

tissues were also discussed. Speckle images obtained form an anesthetized mouse brain 

were used for this. Comparisons with existing methods were made and the advantages and 

limitations were discussed. 

The first two chapters provide the theoretical background needed to appreciate the 

remainder of the work presented in this dissertation. In further chapters, optical vortices 

were detected using a pseudo-phase algorithm in simulated speckle fields (chapter 3) as 

well as those speckle fields obtained from fluid phantoms (chapter 4). The dynamics of 

these vortices in evolving speckle fields were then explored. Applications of aspects of 

Poincaré analysis introduced in chapter 2 were imbibed in the above exploration of vortex 

dynamics, while further expansion of this analysis method in studying stationary and 

evolving speckle fields is demonstrated in chapter 5. 

Limitations of our research and some avenues for future work have been pointed out 

towards the end of some of the chapters. Simulations and modeling of additional biological  

138 
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features (such as tumors) can be done for similar analysis. Additionally, looking at the 

Poincaré descriptors individually to see if they contain useful information encoded in them, 

under any specific circumstances, might be another direction to pursue. As such, the work 

presented here is supposed to serve as a starting point for many possible directions 

for future research and applications. 

As pointed out in chapter 1, the existence of optical vortices (or “phase singularities” 

or “wavefront dislocations”) has been known for a few decades. However, to the best of 

our knowledge, no work has been done to link these vortices to biophysical dynamics. 

The research presented in this dissertation demonstrates time evolving phenomena in 

biological systems, such as tissues, result in optical vortex fields that also display temporal 

evolution. Furthermore, and perhaps more critically, the characteristics of the 

evolution of these vortex fields, correlate with the dynamics of the associated 

biological system. Novel quantitative measures have been introduced and discussed 

to draw these correlations. Outside of biophysical dynamics, other directions in which 

the results from this research can be potentially applied are improvements in optical 

imaging techniques and an improved understanding of light scattering and 

propagation. This would, in turn, expand our current knowledge about the physics of 

coherent wave fields. 
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A Copyright documents 

A.1 Permission obtained from SPIE
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B MATLAB Codes 

B.1 Generating simulated speckle frames, locating optical
vortices in them and calculating their statistical properties

(Primarily used for calculations in Chapter 3) 

close all 

%SECTION 1: Create the Speckle fields and Locate the vortices 

stream = RandStream.create('mrg32k3a','seed',sum(100*clock));%mt19937ar or 

mrg32k3a 

M = 512; 

rand(stream,M); 

fact = 10; 

N = fact*M;% Nyquist is 2*M... 

num =50; 

mult = 4 ;% increase this parameter to shorten correlation time 

resolution=4;%change this to determine how close is close enough to call a continuous 

trail; number 'n' means two consecutive vortices have to be within 'n-1' 

%resolution has to be at least 2, for anything meaningful 

%resolution=4 seems optimal 

coarsing_factor=1;%Default=1, Increase this if it is required to skip certain frames (Ex: 

coarsing factor=2 would mean all computations done on alternating frames) 
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% The following is the specified correlation between the phase realizations 

%r_spec = cos(pi*[0:num-1]/(num-1));corr= 'Constant';% Gives constant sequential 

speckle 

correlation 

r_spec = 2*(1-([0:num-1]/(num-1)).^2).^2 - 1;corr= 'Gaussian'; % Yields Gaussian 

%r_spec = 2*(1-([0:num-1]/(num-1))).^2 - 1;corr= 'Lorentzian'; % Yields exponential 

% create circular frequency plane mask 

mask = linspace(-1,1,M); 

mask = ones(M,1)*mask; 

mask = sqrt(mask.^2 + mask'.^2); 

mask = (mask <= mask(M/2,1)); 

bf = fix((N-M)/2) + 1; 

ef = bf + M - 1; 

nonz = find(mask);% list of non-zero entries for speckle generation 

cube = zeros(M,M,num); 

speckle_corr = zeros(1,num); 

%upto line 42 to simulate a hole in phase mask 

rad=0; %hole radius, max = M/2 

mid=M/2; 

hole=zeros(M,M); 

for a=1:M 

for b=1:M 

if(sqrt(((a-mid)^2) + ((b-mid)^2))<=rad) 
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hole(a,b)=1; 

end 

end 

end 

mask=mask-hole; 

phase_var = zeros(1,num); 

phase_corr = zeros(1,num); 

amp = sqrt(-2*log(rand(1,M^2)));% amplitude 

phi0 = 2*pi*rand(1,M^2);% initial phase 

phi = atan2(sqrt(1-r_spec),sqrt(1+r_spec));% phase increments 

% First pass through the following loop must be for the case where the 

% phase realizations are perfectly correlated, i.e., r == 1. 

max_neg=0; %to keep track of maximum positive and negative vortices in an exposure in 

the 

entire simulation 

max_pos=0; 

for nnn = 1:num; 

% nnn 

% realizations 

z = amp.*cos(phi0 + phi(nnn));% Gaussian samples 

t = normcdf(z);% uniform samples 

if nnn == 1;t_ref = t;end% reference phase realization 

% compute statistics only over the elements that contribute to the speckle 



www.manaraa.com

145 
 

% pattern 

phase_var(nnn) = var(t_ref(nonz) - t(nonz)); 

t = reshape(t,[M M]); 

% keep_t(:,:,nnn) = t; 

x = zeros(N,N); 

x(bf:ef,bf:ef) = exp(mult*complex(0,1)*2*pi*t).*mask; 

x = fft2(fftshift(x)); 

x = x(1:N/fact,1:N/fact); 

rx = real(x); 

ix = imag(x); 

x = x.*conj(x); 

x = x/max(x(:)); 

if nnn == 1;x_ref = x;end 

coef = corrcoef(x_ref,x);% speckle pattern correlation coefficient 

speckle_corr(nnn) = coef(1,2); 

cube(:,:,nnn) = x; 

figure(1);imagesc(sqrt(x));axis image;colormap gray 

title('speckle pattern') 

figure(2);contour(rx,[0 0],'r-');axis ij;axis square; 

title('zero-contours of real and imaginary field components') 

hold on 

contour(ix,[0 0],'k-'); 

hold off 
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phase = atan2(ix,rx); 

d1=[0 1;0 -1]; 

d2=[1 -1;0 0]; 

d3=[-1 0;1 0]; 

d4=[0 0;-1 1]; 

f1=conv2(phase,d1,'same');f1=round(f1/(2*pi)); 

f2=conv2(phase,d2,'same');f2=round(f2/(2*pi)); 

f3=conv2(phase,d3,'same');f3=round(f3/(2*pi)); 

f4=conv2(phase,d4,'same');f4=round(f4/(2*pi)); 

dmap=f1+f2+f3+f4; 

[neg_rr,neg_cc] = find(dmap == -1);%Topological charge of -1 

figure(3);imagesc(phase);colormap gray;axis image 

title('phase and point-singularities');hold on 

n_v_of_minus_one=length(neg_rr); 

plot(cc,rr,'bo');hold on 

[pos_rr,pos_cc] = find(dmap == 1);%Topological charge of 1 

plot(cc,rr,'ro');hold on 

n_v_of_one=length(pos_rr); 

[rr,cc] = find(dmap ~= 0); 

n_v=length(rr); 

figure(4);imagesc(phase);colormap gray;colorbar;axis image 

title('phase and point-singularities');hold on 

plot(cc,rr,'y.','markersize',24);hold off; 



www.manaraa.com

147 

B_pos(1:length(pos_rr),1,nnn)=pos_rr;A_pos=B_pos(:,1,nnn); 

B_pos(1:length(pos_rr),2,nnn)=pos_cc;C_pos=B_pos(:,2,nnn); 

B_pos(1:length(pos_rr),3,nnn)=nnn;D_pos=B_pos(:,3,nnn); 

B_neg(1:length(neg_rr),1,nnn)=neg_rr;A_neg=B_neg(:,1,nnn); 

B_neg(1:length(neg_rr),2,nnn)=neg_cc;C_neg=B_neg(:,2,nnn); 

B_neg(1:length(neg_rr),3,nnn)=nnn;D_neg=B_neg(:,3,nnn); 

figure(5);imagesc(sqrt(x));colormap gray;axis image; 

title('speckle pattern and point-singularities (Green -1; Red +1)');drawnow;hold on 

plot(pos_cc,pos_rr,'ro');hold on;plot(neg_cc,neg_rr,'go');drawnow;hold off 

figure(6);plot3(D_pos,C_pos,abs(M-A_pos),'r.','markersize',20);axis ij;axis tight;grid 

on;box on;hold on 

plot3(D_neg,C_neg,abs(M-A_neg),'g.','markersize',20); 

xlabel('Exposure number');ylabel('x-coordinate');zlabel('y-coordinate'); 

title('Vortex paths (Green -1; Red +1)'); 

if (n_v_of_one > max_pos) 

max_pos=n_v_of_one; 

end 

if (n_v_of_minus_one > max_neg) 

max_neg=n_v_of_minus_one; 

end 

end 

%SECTION 2: Constructing the matrices of vortex paths 

pos_vortices=0; 
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neg_vortices=0; 

total_pos_trails=0; 

total_neg_trails=0; 

pos_location= NaN(max_pos,3,num); 

neg_location= NaN(max_neg,3,num); 

for k=1:num 

for p= 1:max_pos 

if(B_pos(p,3,k)>0) 

pos_vortices= pos_vortices+1; 

pos_location(p,1,k)=B_pos(p,2,k); 

pos_location(p,2,k)=abs(M-B_pos(p,1,k)); 

pos_location(p,3,k)=k; 

else 

pos_location(p,3,k)=0; 

end 

end 

for m=1:max_neg 

if(B_neg(m,3,k)>0) 

neg_vortices = neg_vortices+1; 

neg_location(m,1,k)=B_neg(m,2,k); 

neg_location(m,2,k)=abs(M-B_neg(m,1,k)); 

neg_location(m,3,k)=k; 

else 
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neg_location(m,3,k)=0; 

end 

end 

end 

temp_pos= pos_location; %do not want to change location matrices, so introducing new 

matrices 

temp_neg= neg_location; 

%code to form matrices of trails, with each trail in a single row 

pos_trails= NaN(max_pos*num,3,num); %maximum possible size; initial allocation runs 

faster than dynamic allocation 

neg_trails= NaN(max_neg*num,3,num); %worst case scenario: every trail has a single 

vortex 

%computing positive trails 

framecheck=1; 

currenttrail=0; 

while (framecheck<num+1) 

% checking_frame = framecheck 

for(s=1:max_pos) 

% total_pos_trails= total_pos_trails + 1; 

if(temp_pos(s,3,framecheck)>0) %checking existence 

% found_new_vortex_at_position = s 

currenttrail=currenttrail+1; 

total_pos_trails= total_pos_trails + 1; 
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currentframe=framecheck; 

count=1; 

pos_trails(currenttrail,1,count)=temp_pos(s,1,currentframe); 

pos_trails(currenttrail,2,count)=temp_pos(s,2,currentframe); 

pos_trails(currenttrail,3,count)=1; 

compare_x=temp_pos(s,1,currentframe); 

compare_y=temp_pos(s,2,currentframe); 

temp_pos(s,3,currentframe)=0; 

count=count+1; 

currentframe=currentframe+coarsing_factor; 

proceed=1; 

while(currentframe < num+1 && proceed ==1) 

% comparing_with_frame = currentframe 

need=1; 

p=1; 

while(p<max_pos+1 && need==1) 

if(abs(temp_pos(p,1,currentframe)-compare_x)<resolution && abs(temp_pos(p,2, 

currentframe)-compare_y)<resolution && temp_pos(p,3,currentframe)>0) 

% above line is for checking continuity and existence; 

% continuity condition can be user defined 

pos_trails(currenttrail,1,count)=temp_pos(p,1,currentframe); 

pos_trails(currenttrail,2,count)=temp_pos(p,2,currentframe); 

pos_trails(currenttrail,3,count)=1; 
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compare_x=temp_pos(p,1,currentframe); 

compare_y=temp_pos(p,2,currentframe); 

temp_pos(p,3,currentframe)=0; 

need=0; 

count=count+1; 

currentframe=currentframe+coarsing_factor; 

% if(currentframe>num) 

% currentrail = currenttrail +1 ; 

% end 

end 

p=p+1; 

end 

if (need==1) 

proceed=0; 

% currenttrail=currenttrail+1; 

% total_pos_trails= total_pos_trails + 1; 

end 

end 

end 

end 

framecheck=framecheck+1; 

%currenttrail = currenttrail+1; 

end 
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%computing negative trails 

framecheck=1; 

currenttrail=0; 

while (framecheck<num+1) 

%checking_frame = framecheck 

for(s=1:max_neg) 

if(temp_neg(s,3,framecheck)>0) %checking existence 

currenttrail=currenttrail+1; 

total_neg_trails= total_neg_trails + 1; 

currentframe=framecheck; 

count=1; 

neg_trails(currenttrail,1,count)=temp_neg(s,1,currentframe); 

neg_trails(currenttrail,2,count)=temp_neg(s,2,currentframe); 

neg_trails(currenttrail,3,count)=1; 

compare_x=temp_neg(s,1,currentframe); 

compare_y=temp_neg(s,2,currentframe); 

temp_neg(s,3,currentframe)=0; 

count=count+1; 

currentframe=currentframe+coarsing_factor; 

proceed=1; 

while(currentframe < num+1 && proceed ==1) 

% comparing_with_frame = currentframe 

need=1; 
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p=1; 

while(p<max_neg+1 && need==1) 

if(abs(temp_neg(p,1,currentframe)-compare_x)<resolution && abs(temp_neg(p,2, 

currentframe)-compare_y)<resolution && temp_neg(p,3,currentframe)>0) 

% above line is for checking continuity and existence; 

% continuity condition can be user defined 

neg_trails(currenttrail,1,count)=temp_neg(p,1,currentframe); 

neg_trails(currenttrail,2,count)=temp_neg(p,2,currentframe); 

neg_trails(currenttrail,3,count)=1; 

compare_x=temp_neg(p,1,currentframe); 

compare_y=temp_neg(p,2,currentframe); 

temp_neg(p,3,currentframe)=0; 

need=0; 

count=count+1; 

currentframe=currentframe+coarsing_factor; 

end 

p=p+1; 

end 

if (need==1) 

proceed=0; 

% currenttrail=currenttrail+1; 

end 

end 
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end 

end 

framecheck=framecheck+1; 

end 

corr 

mult 

average_pos_trail_length= pos_vortices/total_pos_trails 

average_neg_trail_length= neg_vortices/total_neg_trails 

average_trail_length= (pos_vortices + neg_vortices)/(total_pos_trails + total_neg_trails) 

%SECTION 3: Displaying in a trailwise manner, for better visualisation 

%each trail formns a column 

trailwise_pos= NaN(num,2,max_pos*num); 

trailwise_neg= NaN(num,2,max_neg*num); 

for(n=1:num) 

for(p=1:max_pos*num) 

trailwise_pos(n,1,p)=pos_trails(p,1,n); 

trailwise_pos(n,2,p)=pos_trails(p,2,n); 

end 

end 

for(n=1:num) 

for(p=1:max_neg*num) 

trailwise_neg(n,1,p)=neg_trails(p,1,n); 

trailwise_neg(n,2,p)=neg_trails(p,2,n); 
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end 

end 

%SECTION 4: Calculating the deviation in vortex paths 

%NOT used in dissertation but included for any future applications 

memory_neg= NaN(max_neg*num,3,num); 

memory_pos= NaN(max_pos*num,3,num); 

check_x=M+5;%setting up initial values where there can never be vortices 

check_y=M+5; 

for p=1:max_neg*num 

m=1; 

for q=1:num 

if((neg_trails(p,1,q)~=check_x |neg_trails(p,2,q) ~= check_y)&& neg_trails(p,3,q)>0) 

memory_neg(p,1,m)=neg_trails(p,1,q); 

memory_neg(p,2,m)=neg_trails(p,2,q); 

memory_neg(p,3,m)=1; 

check_x= memory_neg(p,1,m); 

check_y= memory_neg(p,2,m); 

m=m+1; 

end 

end 

end 

check_x=M+5;%same for positive vortices 

check_y=M+5; 
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for p=1:max_pos*num 

m=1; 

for q=1:num 

if((pos_trails(p,1,q)~=check_x |pos_trails(p,2,q) ~= check_y)&& pos_trails(p,3,q)>0) 

memory_pos(p,1,m)=pos_trails(p,1,q); 

memory_pos(p,2,m)=pos_trails(p,2,q); 

memory_pos(p,3,m)=1; 

check_x= memory_pos(p,1,m); 

check_y= memory_pos(p,2,m); 

m=m+1; 

end 

end 

end 

memory_theta_pos= NaN(max_pos*num,num); 

memory_theta_neg= NaN(max_neg*num,num); 

for k= 2:num-1 % first and last columns are meaningless, as they cannot represent 

deviations 

for p=1:max_pos*num % calculations for each positive vortex, one by one 

if(memory_pos(p,3,k-1)> 0 && memory_pos(p,3,k)> 0 && memory_pos(p,3,k+1) > 0)% 

checking that 3 consecutive positive vortices exist 

sam1=memory_pos(p,1,k-1);%x-coordinate of previous vortex 

sam2=memory_pos(p,2,k-1);%y-coordinate of previous vortex 

sam3=memory_pos(p,1,k);%x-coordinate of current vortex 
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sam4=memory_pos(p,2,k);%y-coordinate of current vortex 

sam5=memory_pos(p,1,k+1);%x-coordinate of next vortex 

sam6=memory_pos(p,2,k+1);%y-coordinate of next vortex 

memory_theta_pos(p,k)=real(acosd(real(dot(((sam3+i*sam4)-(sam1+i*sam2)), 

((sam5+i*sam6)-(sam3+i*sam4))))/(norm((sam3+i*sam4)-

(sam1+i*sam2))*norm((sam5+i*sam6)- 

(sam3+i*sam4))))); 

end 

end 

for p=1:max_neg*num %similar as above, with the negative vortices 

if(memory_neg(p,3,k-1)> 0 && memory_neg(p,3,k)> 0 && memory_neg(p,3,k+1) > 

0)% 

checking that 3 consecutive positive vortices exist 

sam1=memory_neg(p,1,k-1);%x-coordinate of previous vortex 

sam2=memory_neg(p,2,k-1);%y-coordinate of previous vortex 

sam3=memory_neg(p,1,k);%x-coordinate of current vortex 

sam4=memory_neg(p,2,k);%y-coordinate of current vortex 

sam5=memory_neg(p,1,k+1);%x-coordinate of next vortex 

sam6=memory_neg(p,2,k+1);%y-coordinate of next vortex 

memory_theta_neg(p,k)=real(acosd(real(dot(((sam3+i*sam4)-(sam1+i*sam2)), 

((sam5+i*sam6)-(sam3+i*sam4))))/(norm((sam3+i*sam4)-

(sam1+i*sam2))*norm((sam5+i*sam6)- 

(sam3+i*sam4))))); 
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end 

end 

end 

% figure(13);hist(memory_theta_pos,36);xlabel('Deviation in degrees');ylabel 

('Frequency'); title('Deviation of positive vortices'); 

% figure(14);hist(memory_theta_neg,36);xlabel('Deviation in degrees');ylabel 

('Frequency'); title('Deviation of negative vortices'); 

%better visualisation trailwise 

memory_trailwise_pos= NaN(num,2,max_pos*num); 

memory_trailwise_neg= NaN(num,2,max_neg*num); 

for(n=1:num) 

for(p=1:max_pos*num) 

memory_trailwise_pos(n,1,p)=memory_pos(p,1,n); 

memory_trailwise_pos(n,2,p)=memory_pos(p,2,n); 

end 

end 

for(n=1:num) 

for(p=1:max_neg*num) 

memory_trailwise_neg(n,1,p)=memory_neg(p,1,n); 

memory_trailwise_neg(n,2,p)=memory_neg(p,2,n); 

end 

end 

%% 
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x=memory_theta_pos(:); 

[f,xi] = ksdensity(x,'width',10); 

%xi=xi./mean(xi); 

%figure(2);plot(xi,f./sum(f));%Normalizes 

figure(12);plot(xi,f); 

grid on 

%figure(13);semilogy(xi/mean(xi),f./.0129); 

xlabel('Angle');ylabel('P(I)');axis([0 180 0 .025]); 

title(['PDF for ' ,corr]); 

hold on 

y=memory_theta_neg(:); 

[f,yi] = ksdensity(y,'width',10); 

%xi=xi./mean(xi); 

%figure(2);plot(xi,f./sum(f));%Normalizes 

figure(12);plot(yi,f,'r'); 

legend('positive','negative') 

grid on 

%figure(13);semilogy(xi/mean(xi),f./.0129); 

xlabel('Angle');ylabel('P(I)'); 

title(['PDF for ' ,corr]) 

%SECTION 5: Plots and statistical calculations 

pos_count=zeros(num,1); 

neg_count=zeros(num,1); 
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for(i=1:num) 

count=0; 

for(j=1:max_pos) 

if(pos_location(j,3,i)>0) 

count=count+1; 

end 

end 

pos_count(i)=count; 

count=0; 

for(j=1:max_neg) 

if(neg_location(j,3,i)>0) 

count=count+1; 

end 

end 

neg_count(i)=count; 

end 

figure(14);plot(pos_count,'r.','markersize', 18);hold on; 

plot(neg_count,'b.','markersize', 18) 

xlabel('Frames');ylabel('No.of vortices'); 

title(['Vortex count for ' ,corr, '(Red:+1, Blue:-1)']) 

pos_traillength=zeros(total_pos_trails,1); 

neg_traillength=zeros(total_neg_trails,1); 

for(i=1:total_pos_trails) 
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count=0; 

for(j=1:num) 

if(isfinite(trailwise_pos(j,2,i))) 

count=count+1; 

end 

end 

pos_traillength(i)=count; 

end 

for(i=1:total_neg_trails) 

count=0; 

for(j=1:num) 

if(isfinite(trailwise_neg(j,2,i))) 

count=count+1; 

end 

end 

neg_traillength(i)=count; 

end 

figure(15);plot(pos_traillength,'r.','markersize', 18);hold on; 

plot(neg_traillength,'b.','markersize', 18) 

xlabel('Trail #');ylabel('Trail Length'); 

title(['Trail lengths for ' ,corr, '(Red:+1, Blue:-1)']) 

standard_deviation_pos_traillength= std(pos_traillength) 

standard_deviation_neg_traillength= std(neg_traillength) 
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total_pos_trails 

total_neg_trails 

pos_motions=zeros(total_pos_trails,1); 

neg_motions=zeros(total_neg_trails,1); 

total_pos_motions=0; 

total_neg_motions=0; 

for(i=1:total_pos_trails) 

count=0; 

for(j=1:num) 

if(isfinite(memory_trailwise_pos(j,2,i))) 

count=count+1; 

end 

end 

pos_motions(i)=count-1; 

total_pos_motions = total_pos_motions + pos_motions(i); 

end 

for(i=1:total_neg_trails) 

count=0; 

for(j=1:num) 

if(isfinite(memory_trailwise_neg(j,2,i))) 

count=count+1; 

end 

end 



www.manaraa.com

163 
 

neg_motions(i)=count-1; 

total_neg_motions = total_neg_motions + neg_motions(i); 

end 

figure(16);plot(pos_motions,'r.','markersize', 18);hold on; 

plot(neg_motions,'b.','markersize', 18) 

xlabel('Trail #');ylabel('# Motions'); 

title(['Net Motions for ' ,corr, '(Red:+1, Blue:-1)']) 

pos_motion_probability = total_pos_motions / pos_vortices 

neg_motion_probability = total_neg_motions / neg_vortices 

mean_pos = NaN(num,2); 

mean_neg = NaN(num,2); 

mean_location= NaN(num,2); 

for(i=1:num) 

mean_pos(i,1)= mean(pos_location(1:pos_count(i),1,i)); 

mean_pos(i,2)= mean(pos_location(1:pos_count(i),2,i)); 

mean_neg(i,1)= mean(neg_location(1:neg_count(i),1,i)); 

mean_neg(i,2)= mean(neg_location(1:neg_count(i),2,i)); 

mean_location(i,1)= (mean_pos(i,1)*pos_count(i) + 

mean_neg(i,1)*neg_count(i))/(pos_count 

(i) + neg_count(i)); 

mean_location(i,2)= (mean_pos(i,2)*pos_count(i) + 

mean_neg(i,2)*neg_count(i))/(pos_count 

(i) + neg_count(i)); 
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figure(17);%plot3(i,mean_pos(i,1),mean_pos(i,2),'r.','markersize',20);axis ij;axis tight; 

grid on;box on;hold on 

%plot3(i,mean_neg(i,1),mean_neg(i,2),'b.','markersize',20); hold on; 

plot3(i,mean_location(i,1),mean_location(i,2),'g.','markersize',20); hold on; 

xlabel('Frame number');ylabel('x-coordinate');zlabel('y-coordinate'); 

title(['Path of mean vortex (Blue -1; Red +1; Green Central) for ', corr]); 

end 

pos_displacement= NaN(num,1); 

neg_displacement= NaN(num,1); 

central_displacement = NaN(num,1); 

gap= NaN(num,1); 

pos_displacement(1)=0; 

neg_displacement(1)=0; 

central_displacement(1)=0; 

gap(1)= sqrt(power(mean_pos(1,1)-mean_neg(1,1),2)+power(mean_pos(1,2)-

mean_neg(1,2),2)); 

for(i=2:num) 

gap(i)= sqrt(power(mean_pos(i,1)-mean_neg(i,1),2)+power(mean_pos(i,2)-

mean_neg(i,2), 

2)); 

pos_displacement(i)= sqrt(power(mean_pos(i,1)-mean_pos(i-

1,1),2)+power(mean_pos(i,2)- 

mean_pos(i-1,2),2)); 
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neg_displacement(i)= sqrt(power(mean_neg(i,1)-mean_neg(i-

1,1),2)+power(mean_neg(i,2)- 

mean_neg(i-1,2),2)); 

central_displacement(i)= sqrt(power(mean_location(i,1)-mean_location(i-1,1),2)+power 

(mean_location(i,2)-mean_location(i-1,2),2)); 

end 

average_positive_displacement = mean(pos_displacement) 

average_negative_displacement = mean(neg_displacement) 

average_central_displacement = mean(central_displacement) 

average_gap = mean(gap) 

stdev_positive_displacement = std(pos_displacement) 

stdev_negative_displacement = std(neg_displacement) 

stdev_central_displacement = std(central_displacement) 

stdev_gap = std(gap) 

figure(18);plot(pos_displacement,'r.','markersize', 18);hold on; 

plot(neg_displacement,'b.','markersize', 18); hold on; 

plot(central_displacement,'y.','markersize', 18); hold on; 

plot(gap,'g.','markersize', 18); 

xlabel('Frame #');ylabel('Distance in coordinate points'); 

title(['Net Displacements for ' ,corr, '(Red:+1, Blue:-1, Green: Gap, Yellow:Central)']) 

% SECTION 6: Code for Poincare plots 

array1= gap;param='Gap'; 

%options:"pos_count","neg_count","pos_count+neg_count","pos_displacement"," 
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neg_displacement","central_displacement","gap" 

len=length(array1); 

ele=len+1; 

array2=zeros(ele,1); 

array2(1)=0; 

array2(2:ele)=array1; 

center=(min(array1)+ max(array1))/2; 

%%Alternative Definitions 

%sd1c=sqrt((1/(len-1))*sum(((array1(2:len)-array2(2:len))-mean(array1(2:len)-array2(2: 

len))).^2)/2) 

%sd2c= sqrt((1/len)*sum(((array1(2:len)+array2(2:len))-mean(array1(2:len)+array2(2: 

len))).^2)/2) 

sdsd=sqrt(mean((array1(2:len)-array2(2:len)).^2)-(mean(array1(2:len)-array2(2:len)))^2); 

sdrr=sqrt(mean((array1).^2)-(mean(array1))^2); 

sd1=sqrt((sdsd^2)/2) 

sd2= sqrt(2*sdrr^2-sd1^2) 

figure(19); 

plot(array2(2:ele-1),array1(2:ele-1),'r.'); 

title(['Poincare Plot for ', corr, ' of ', param]); 

xlabel('Previous measure');ylabel('Next Measure');hold on; 

plot(1:1.5*max(array1),1:1.5*max(array1),'--');hold on; 

t=0:0.01:2*pi; 

sds1=1.01; 
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sds2=1.85 

xx = sds2*sin(t) ; 

yy = sds1*cos(t) ; 

xx2 = xx*cos(pi/4) - yy*sin(pi/4) + center; 

yy2 = xx*sin(pi/4) + yy*cos(pi/4) + center; 

plot(xx2,yy2);axis equal; 

% str={'sd1=',sd1,'sd2=',sd2,'mult=',mult,'corr=',corr}; 

% text(max(array1)/10,1.2*max(array1),str); 

%for intensity on each column 

mid= round(M/2); 

for nnn=1:num 

hor_intensity (nnn,:)= cube(mid,:,nnn); 

vert_intensity (nnn,:)= cube(:,mid,nnn); 

end 

corr 

fact 

B.2 Calculating vortex statistics from speckle images obtained 
from dynamic scattering systems  
 

(Primarily used for calculations in Chapter 4) 

clear all; 

close all; 

warning off; 
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images=300;%No. of images to input 

skip_factor=1 %'1' means read every image;ensure that (images*skip_factor)< images in 

folder 

path= 'F:\Anindya\Alum\dyn3_far5_10fps\'; 

prefix='open_2018-06-20-150109-';   

format='.bmp';       %input 

sc= [120 40];%starting coordinates for cropped square 

sz= 400; %size of cropped square 

rect=[sc(1) sc(2) sz sz]; 

% cube= zeros(size(640,480,images)); 

max_pos=0; 

max_neg=0; 

coarsing_factor=1; 

speckle_cor=zeros(images);%Speckle Correlation, compared to Frame#1 

rel_cor1=zeros(images); 

vortex_cor=zeros(images);%Vortex Correlation, compared to Frame#1 

rel_cor2=zeros(images); 

resolution=80; 

spread=zeros(sz,sz,images); 

for num=1:images 

  %num 

  im= imread(strcat(path,prefix,num2str(skip_factor*(num-1),'%04g'),format)); 
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  im=im(:,:,1); 

  im=double(im); 

  raw_cube(:,:,num)=im; 

%figure(1);imagesc(im); colormap gray;hold on;title('Original Image'); 

% rectangle('Position',rect,'EdgeColor','r'); 

  

  im=im/max(im(:)); 

  im=im-mean(im(:)); 

  imfilt=imgaussfilt(im,12); 

  cube(:,:,num)=imfilt; 

  im=imcrop(im,rect); 

%figure(2);imagesc(im); colormap gray;hold on;title('Cropped Section');axis square; 

   

spect=hilbert(imfilt); 

spect=hilbert(spect'); 

spect=spect'; 

hrx1=real(spect(rect(2):(rect(2)+rect(4)),rect(1):(rect(1)+rect(3)))); 

hix1=imag(spect(rect(2):(rect(2)+rect(4)),rect(1):(rect(1)+rect(3)))); 

  

imfilt=imcrop(imfilt,rect); 

%figure(3);imagesc(imfilt); colormap gray;hold on;title('Filtered Section');axis square; 

  

phase = atan2(hix1,hrx1); 
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d1=[0 1;0 -1]; 

d2=[1 -1;0 0]; 

d3=[-1 0;1 0]; 

d4=[0 0;-1 1];  

f1=conv2(phase,d1,'same');f1=round(f1/(2*pi)); 

f2=conv2(phase,d2,'same');f2=round(f2/(2*pi)); 

f3=conv2(phase,d3,'same');f3=round(f3/(2*pi)); 

f4=conv2(phase,d4,'same');f4=round(f4/(2*pi)); 

dmap=f1+f2+f3+f4; 

[neg_rr,neg_cc] = find(dmap == -1);%Topological charge of -1 

 %figure(4);imagesc(phase);colormap gray;axis image 

% title('phase and point-singularities');hold on 

n_v_of_minus_one=length(neg_rr); 

  

% plot(cc,rr,'bo');hold on 

[pos_rr,pos_cc] = find(dmap == 1);%topological charge of 1 

% plot(cc,rr,'ro');hold on 

n_v_of_one=length(pos_rr); 

[rr,cc] = find(dmap ~= 0); 

n_v=length(rr);   

%figure(5);imagesc(phase);colormap gray;colorbar;axis image; hold on; 

%title('phase and point-singularities');hold on  

%plot(cc,rr,'y.','markersize',24);hold off; 
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B_pos(1:length(pos_rr),1,num)=pos_rr;A_pos=B_pos(:,1,num); 

B_pos(1:length(pos_rr),2,num)=pos_cc;C_pos=B_pos(:,2,num); 

B_pos(1:length(pos_rr),3,num)=num;D_pos=B_pos(:,3,num); 

  

B_neg(1:length(neg_rr),1,num)=neg_rr;A_neg=B_neg(:,1,num); 

B_neg(1:length(neg_rr),2,num)=neg_cc;C_neg=B_neg(:,2,num); 

B_neg(1:length(neg_rr),3,num)=num;D_neg=B_neg(:,3,num); 

  

%figure(6);imagesc(phase);colormap gray;axis image;hold on; 

%title('speckle pattern and point-singularities (Green -1; Red +1)');drawnow;hold on 

%plot(pos_cc,pos_rr,'rx','markersize',10,'LineWidth',4);hold 

on;plot(neg_cc,neg_rr,'go','markersize',10,'LineWidth',4);drawnow;hold off 

figure(7);plot3(D_pos,C_pos,abs(sz-A_pos),'bo','markersize',5);axis ij;axis tight;grid 

on;box on;hold on 

plot3(D_neg,C_neg,abs(sz-A_neg),'r.','markersize',20); 

xlabel('Exposure number');ylabel('x-coordinate');zlabel('y-coordinate'); 

if (n_v_of_one > max_pos) 

    max_pos=n_v_of_one; 

end 

if (n_v_of_minus_one > max_neg) 

    max_neg=n_v_of_minus_one; 
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end 

end 

num=images; 

M=sz; 

spread=zeros(M+1,M+1,num); 

SECTION 2: Constructing the matrices of vortex paths 

    pos_vortices=0; 

    neg_vortices=0; 

    total_pos_trails=0; 

    total_neg_trails=0; 

pos_location= NaN(max_pos,3,num); 

neg_location= NaN(max_neg,3,num); 

for k=1:num 

    for p= 1:max_pos 

        if(B_pos(p,3,k)>0) 

            pos_vortices= pos_vortices+1; 

            pos_location(p,1,k)=B_pos(p,2,k); 

            pos_location(p,2,k)=abs(M-B_pos(p,1,k)); 

            pos_location(p,3,k)=k; 

        else 
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            pos_location(p,3,k)=0; 

        end 

    end 

    for m=1:max_neg 

        if(B_neg(m,3,k)>0) 

            neg_vortices = neg_vortices+1; 

            neg_location(m,1,k)=B_neg(m,2,k); 

            neg_location(m,2,k)=abs(M-B_neg(m,1,k)); 

            neg_location(m,3,k)=k; 

        else 

            neg_location(m,3,k)=0; 

        end 

    end 

end 

'spread' contains vortex coordinates 

for k=1:size(pos_location,3) 

    for i=1:max_pos 

        if(pos_location(i,3,k)==k) 

            spread(pos_location(i,1,k)+1,pos_location(i,2,k)+1,k)=1;%1 shifted to avoid 0 

        end 

    end 

end 

for k=1:size(neg_location,3) 
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    for i=1:max_neg 

        if(neg_location(i,3,k)==k) 

            spread(neg_location(i,1,k)+1,neg_location(i,2,k)+1,k)=-1; 

        end 

    end 

end 

for i=2:num 

speckle_cor(i)=corr2(cube(:,:,1),cube(:,:,i));%Speckle Correlation, compared to Frame#1 

rel_cor1(i)=corr2(cube(:,:,i-1),cube(:,:,i)); 

vortex_cor(i)=corr2(spread(:,:,1),spread(:,:,i));%Vortex Correlation, compared to 

Frame#1 

rel_cor2(i)=corr2(spread(:,:,i-1),spread(:,:,i)); 

end 

temp_pos= pos_location; %do not want to change location matrices, so introducing new 

matrices 

temp_neg= neg_location; 

%code to form matrices of trails, with each trail in a single row  

pos_trails= NaN(max_pos*num,3,num); %maximum possible size; initial allocation runs 

faster than dynamic allocation 

neg_trails= NaN(max_neg*num,3,num); %worst case scenario: every trail has a single 

vortex 

%computing positive trails 
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framecheck=1; 

currenttrail=0; 

while (framecheck<num+1) 

   % checking_frame = framecheck 

    for(s=1:max_pos)         

       % total_pos_trails= total_pos_trails + 1; 

    if(temp_pos(s,3,framecheck)>0) %checking existence 

    %    found_new_vortex_at_position = s 

        currenttrail=currenttrail+1; 

        total_pos_trails= total_pos_trails + 1; 

        currentframe=framecheck; 

        count=1; 

        pos_trails(currenttrail,1,count)=temp_pos(s,1,currentframe); 

        pos_trails(currenttrail,2,count)=temp_pos(s,2,currentframe); 

        pos_trails(currenttrail,3,count)=1; 

        compare_x=temp_pos(s,1,currentframe); 

        compare_y=temp_pos(s,2,currentframe); 

        temp_pos(s,3,currentframe)=0; 

        count=count+1; 

        currentframe=currentframe+coarsing_factor; 

        proceed=1; 

        while(currentframe < num+1 && proceed ==1) 

         %   comparing_with_frame = currentframe 
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            need=1; 

            p=1; 

            while(p<max_pos+1 && need==1) 

        if(abs(temp_pos(p,1,currentframe)-compare_x)<resolution && 

abs(temp_pos(p,2,currentframe)-compare_y)<resolution && 

temp_pos(p,3,currentframe)>0) 

            % above line is for checking continuity and existence; 

            % continuity condition can be user defined 

        pos_trails(currenttrail,1,count)=temp_pos(p,1,currentframe); 

        pos_trails(currenttrail,2,count)=temp_pos(p,2,currentframe); 

        pos_trails(currenttrail,3,count)=1; 

        compare_x=temp_pos(p,1,currentframe); 

        compare_y=temp_pos(p,2,currentframe); 

        temp_pos(p,3,currentframe)=0; 

        need=0; 

        count=count+1; 

        currentframe=currentframe+coarsing_factor; 

%         if(currentframe>num) 

%             currentrail = currenttrail +1 ; 

%         end 

        end 

        p=p+1; 

            end 
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            if (need==1) 

                proceed=0; 

             %   currenttrail=currenttrail+1; 

             %   total_pos_trails= total_pos_trails + 1; 

            end 

  

            end 

        end  

    end 

framecheck=framecheck+1; 

%currenttrail = currenttrail+1; 

end 

  

%computing negative trails 

framecheck=1; 

currenttrail=0; 

while (framecheck<num+1) 

    %checking_frame = framecheck 

    for(s=1:max_neg) 

      

    if(temp_neg(s,3,framecheck)>0) %checking existence 
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        currenttrail=currenttrail+1; 

        total_neg_trails= total_neg_trails + 1; 

        currentframe=framecheck; 

        count=1; 

        neg_trails(currenttrail,1,count)=temp_neg(s,1,currentframe); 

        neg_trails(currenttrail,2,count)=temp_neg(s,2,currentframe); 

        neg_trails(currenttrail,3,count)=1; 

        compare_x=temp_neg(s,1,currentframe); 

        compare_y=temp_neg(s,2,currentframe); 

        temp_neg(s,3,currentframe)=0; 

        count=count+1; 

        currentframe=currentframe+coarsing_factor; 

        proceed=1; 

        while(currentframe < num+1 && proceed ==1) 

          %  comparing_with_frame = currentframe 

            need=1; 

            p=1; 

            while(p<max_neg+1 && need==1) 

        if(abs(temp_neg(p,1,currentframe)-compare_x)<resolution && 

abs(temp_neg(p,2,currentframe)-compare_y)<resolution && 

temp_neg(p,3,currentframe)>0) 

            % above line is for checking continuity and existence; 

            % continuity condition can be user defined 
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        neg_trails(currenttrail,1,count)=temp_neg(p,1,currentframe); 

        neg_trails(currenttrail,2,count)=temp_neg(p,2,currentframe); 

        neg_trails(currenttrail,3,count)=1; 

        compare_x=temp_neg(p,1,currentframe); 

        compare_y=temp_neg(p,2,currentframe); 

        temp_neg(p,3,currentframe)=0; 

        need=0; 

        count=count+1; 

        currentframe=currentframe+coarsing_factor; 

        end 

        p=p+1; 

            end 

      

            if (need==1) 

                proceed=0; 

              %  currenttrail=currenttrail+1; 

                 

            end 

  

            end 

        end  

    end 

framecheck=framecheck+1; 
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end 

    

average_pos_trail_length= pos_vortices/total_pos_trails 

average_neg_trail_length= neg_vortices/total_neg_trails 

average_trail_length= (pos_vortices + neg_vortices)/(total_pos_trails + total_neg_trails) 

  

%SECTION 3: Displaying in a trailwise manner, for better visualisation 

     %each trail formns a column 

     trailwise_pos= NaN(num,2,max_pos*num); 

     trailwise_neg= NaN(num,2,max_neg*num); 

     for(n=1:num) 

         for(p=1:max_pos*num) 

         trailwise_pos(n,1,p)=pos_trails(p,1,n); 

         trailwise_pos(n,2,p)=pos_trails(p,2,n); 

  

     end 

     end 

     for(n=1:num) 

         for(p=1:max_neg*num) 

          

          trailwise_neg(n,1,p)=neg_trails(p,1,n); 

          trailwise_neg(n,2,p)=neg_trails(p,2,n); 

     end 
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     end 

  

%SECTION 4: Calculating the deviation in vortex paths 

memory_neg= NaN(max_neg*num,3,num); 

memory_pos= NaN(max_pos*num,3,num); 

check_x=M+5;%setting up initial values where there can never be vortices 

check_y=M+5; 

for p=1:max_neg*num 

    m=1; 

for q=1:num 

    if((neg_trails(p,1,q)~=check_x |neg_trails(p,2,q) ~= check_y)&& neg_trails(p,3,q)>0) 

        memory_neg(p,1,m)=neg_trails(p,1,q); 

        memory_neg(p,2,m)=neg_trails(p,2,q); 

        memory_neg(p,3,m)=1; 

        check_x= memory_neg(p,1,m); 

        check_y= memory_neg(p,2,m); 

        m=m+1; 

    end 

end 

end 

check_x=M+5;%same for positive vortices 

check_y=M+5; 

for p=1:max_pos*num 
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    m=1; 

for q=1:num 

    if((pos_trails(p,1,q)~=check_x |pos_trails(p,2,q) ~= check_y)&& pos_trails(p,3,q)>0) 

        memory_pos(p,1,m)=pos_trails(p,1,q); 

        memory_pos(p,2,m)=pos_trails(p,2,q); 

        memory_pos(p,3,m)=1; 

        check_x= memory_pos(p,1,m); 

        check_y= memory_pos(p,2,m); 

        m=m+1; 

    end 

end 

end 

  

memory_theta_pos= NaN(max_pos*num,num); 

memory_theta_neg= NaN(max_neg*num,num); 

for k= 2:num-1  % first and last columns are meaningless, as they cannot represent 

deviations 

     

for p=1:max_pos*num % calculations for each positive vortex, one by one  

    if(memory_pos(p,3,k-1)> 0 && memory_pos(p,3,k)> 0 && memory_pos(p,3,k+1) > 

0)% checking that 3 consecutive positive vortices exist 

    sam1=memory_pos(p,1,k-1);%x-coordinate of previous vortex 

    sam2=memory_pos(p,2,k-1);%y-coordinate of previous vortex 
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    sam3=memory_pos(p,1,k);%x-coordinate of current vortex 

    sam4=memory_pos(p,2,k);%y-coordinate of current vortex 

    sam5=memory_pos(p,1,k+1);%x-coordinate of next vortex 

    sam6=memory_pos(p,2,k+1);%y-coordinate of next vortex 

    memory_theta_pos(p,k)=real(acosd(real(dot(((sam3+i*sam4)-

(sam1+i*sam2)),((sam5+i*sam6)-(sam3+i*sam4))))/(norm((sam3+i*sam4)-

(sam1+i*sam2))*norm((sam5+i*sam6)-(sam3+i*sam4))))); 

    end 

    end 

for p=1:max_neg*num %similar as above, with the negative vortices 

    if(memory_neg(p,3,k-1)> 0 && memory_neg(p,3,k)> 0 && memory_neg(p,3,k+1) > 

0)% checking that 3 consecutive positive vortices exist 

    sam1=memory_neg(p,1,k-1);%x-coordinate of previous vortex 

    sam2=memory_neg(p,2,k-1);%y-coordinate of previous vortex 

    sam3=memory_neg(p,1,k);%x-coordinate of current vortex 

    sam4=memory_neg(p,2,k);%y-coordinate of current vortex 

    sam5=memory_neg(p,1,k+1);%x-coordinate of next vortex 

    sam6=memory_neg(p,2,k+1);%y-coordinate of next vortex 

    memory_theta_neg(p,k)=real(acosd(real(dot(((sam3+i*sam4)-

(sam1+i*sam2)),((sam5+i*sam6)-(sam3+i*sam4))))/(norm((sam3+i*sam4)-

(sam1+i*sam2))*norm((sam5+i*sam6)-(sam3+i*sam4))))); 

    end 

    end 
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end 

% figure(13);hist(memory_theta_pos,36);xlabel('Deviation in 

degrees');ylabel('Frequency'); title('Deviation of positive vortices'); 

% figure(14);hist(memory_theta_neg,36);xlabel('Deviation in 

degrees');ylabel('Frequency'); title('Deviation of negative vortices'); 

  

%better visualisation trailwise 

     memory_trailwise_pos= NaN(num,2,max_pos*num); 

     memory_trailwise_neg= NaN(num,2,max_neg*num); 

     for(n=1:num) 

         for(p=1:max_pos*num) 

         memory_trailwise_pos(n,1,p)=memory_pos(p,1,n); 

         memory_trailwise_pos(n,2,p)=memory_pos(p,2,n); 

         

     end 

     end 

     for(n=1:num) 

         for(p=1:max_neg*num) 

         memory_trailwise_neg(n,1,p)=memory_neg(p,1,n); 

         memory_trailwise_neg(n,2,p)=memory_neg(p,2,n); 

          end 

     end 
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%% 

% x=memory_theta_pos(:); 

% [f,xi] = ksdensity(x,'width',10); 

% %xi=xi./mean(xi); 

% %figure(2);plot(xi,f./sum(f));%Normalizes 

% figure(12);plot(xi,f); 

% grid on 

% %figure(13);semilogy(xi/mean(xi),f./.0129); 

% xlabel('Angle');ylabel('P(I)');axis([0 180 0 .025]); 

% %title(['PDF for ' ,corr]); 

% hold on 

% y=memory_theta_neg(:); 

% [f,yi] = ksdensity(y,'width',10); 

% %xi=xi./mean(xi); 

% %figure(2);plot(xi,f./sum(f));%Normalizes 

% figure(12);plot(yi,f,'r'); 

% legend('positive','negative') 

% grid on 

% %figure(13);semilogy(xi/mean(xi),f./.0129); 

% xlabel('Angle');ylabel('P(I)'); 

% %title(['PDF for ' ,corr]) 
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%SECTION 5: Plots and statistical calculations 

  

pos_count=zeros(num,1); 

neg_count=zeros(num,1); 

for(i=1:num) 

 count=0; 

for(j=1:max_pos) 

    

if(pos_location(j,3,i)>0) 

    count=count+1; 

end 

end 

pos_count(i)=count; 

 count=0; 

for(j=1:max_neg) 

  

if(neg_location(j,3,i)>0) 

    count=count+1; 

end 

end 

neg_count(i)=count; 

end 
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% figure(14);plot(pos_count,'r.','markersize', 18);hold on; 

% plot(neg_count,'b.','markersize', 18) 

% xlabel('Frames');ylabel('No.of vortices'); 

% %title(['Vortex count for ' ,corr, '(Red:+1, Blue:-1)']) 

  

pos_traillength=zeros(total_pos_trails,1); 

neg_traillength=zeros(total_neg_trails,1); 

for(i=1:total_pos_trails) 

 count=0; 

for(j=1:num) 

    

if(isfinite(trailwise_pos(j,2,i))) 

    count=count+1; 

end 

end 

pos_traillength(i)=count; 

end 

for(i=1:total_neg_trails) 

 count=0; 

for(j=1:num) 

  

if(isfinite(trailwise_neg(j,2,i))) 
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    count=count+1; 

end 

end 

neg_traillength(i)=count; 

end 

% figure(15);plot(pos_traillength,'r.','markersize', 18);hold on; 

% plot(neg_traillength,'b.','markersize', 18) 

% xlabel('Trail #');ylabel('Trail Length'); 

% %title(['Trail lengths for ' ,corr, '(Red:+1, Blue:-1)']) 

%  

% standard_deviation_pos_traillength= std(pos_traillength) 

% standard_deviation_neg_traillength= std(neg_traillength) 

  

total_pos_trails 

total_neg_trails 

  

  

pos_motions=zeros(total_pos_trails,1); 

neg_motions=zeros(total_neg_trails,1); 

total_pos_motions=0; 

total_neg_motions=0; 

for(i=1:total_pos_trails) 

 count=0; 
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for(j=1:num) 

    

if(isfinite(memory_trailwise_pos(j,2,i))) 

    count=count+1; 

end 

end 

pos_motions(i)=count-1; 

total_pos_motions = total_pos_motions + pos_motions(i); 

end 

for(i=1:total_neg_trails) 

 count=0; 

for(j=1:num) 

  

if(isfinite(memory_trailwise_neg(j,2,i))) 

    count=count+1; 

end 

end 

neg_motions(i)=count-1; 

total_neg_motions = total_neg_motions + neg_motions(i); 

end 

% figure(16);plot(pos_motions,'r.','markersize', 18);hold on; 

% plot(neg_motions,'b.','markersize', 18) 

% xlabel('Trail #');ylabel('# Motions'); 
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% %title(['Net Motions for ' ,corr, '(Red:+1, Blue:-1)']) 

  

pos_motion_probability = total_pos_motions / pos_vortices 

neg_motion_probability = total_neg_motions / neg_vortices 

  

mean_pos = NaN(num,2); 

mean_neg = NaN(num,2); 

mean_location= NaN(num,2); 

  

for(i=1:num) 

 mean_pos(i,1)= mean(pos_location(1:pos_count(i),1,i)); 

 mean_pos(i,2)= mean(pos_location(1:pos_count(i),2,i)); 

 mean_neg(i,1)= mean(neg_location(1:neg_count(i),1,i)); 

 mean_neg(i,2)= mean(neg_location(1:neg_count(i),2,i)); 

  

 mean_location(i,1)= (mean_pos(i,1)*pos_count(i) + 

mean_neg(i,1)*neg_count(i))/(pos_count(i) + neg_count(i)); 

 mean_location(i,2)= (mean_pos(i,2)*pos_count(i) + 

mean_neg(i,2)*neg_count(i))/(pos_count(i) + neg_count(i)); 

  

  

% figure(17);%plot3(i,mean_pos(i,1),mean_pos(i,2),'r.','markersize',20);axis ij;axis 

tight;grid on;box on;hold on 
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% %plot3(i,mean_neg(i,1),mean_neg(i,2),'b.','markersize',20); hold on; 

% plot3(i,mean_location(i,1),mean_location(i,2),'g.','markersize',20); hold on; 

% xlabel('Frame number');ylabel('x-coordinate');zlabel('y-coordinate'); 

% title(['Path of mean vortex (Blue -1; Red +1; Green Central)']); 

end 

  

  

pos_displacement= NaN(num,1); 

neg_displacement= NaN(num,1); 

central_displacement = NaN(num,1); 

gap= NaN(num,1); 

  

pos_displacement(1)=0; 

neg_displacement(1)=0; 

central_displacement(1)=0; 

gap(1)= sqrt(power(mean_pos(1,1)-mean_neg(1,1),2)+power(mean_pos(1,2)-

mean_neg(1,2),2)); 

  

for(i=2:num) 

    gap(i)= sqrt(power(mean_pos(i,1)-mean_neg(i,1),2)+power(mean_pos(i,2)-

mean_neg(i,2),2)); 

    pos_displacement(i)= sqrt(power(mean_pos(i,1)-mean_pos(i-

1,1),2)+power(mean_pos(i,2)-mean_pos(i-1,2),2)); 
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    neg_displacement(i)= sqrt(power(mean_neg(i,1)-mean_neg(i-

1,1),2)+power(mean_neg(i,2)-mean_neg(i-1,2),2)); 

    central_displacement(i)= sqrt(power(mean_location(i,1)-mean_location(i-

1,1),2)+power(mean_location(i,2)-mean_location(i-1,2),2)); 

end 

average_positive_displacement = mean(pos_displacement) 

average_negative_displacement = mean(neg_displacement) 

average_central_displacement = mean(central_displacement) 

average_gap = mean(gap) 

stdev_positive_displacement = std(pos_displacement) 

stdev_negative_displacement = std(neg_displacement) 

stdev_central_displacement = std(central_displacement) 

stdev_gap = std(gap) 

% figure(18);plot(pos_displacement,'r.','markersize', 18);hold on; 

% plot(neg_displacement,'b.','markersize', 18); hold on; 

% plot(central_displacement,'y.','markersize', 18); hold on; 

% plot(gap,'g.','markersize', 18); 

% xlabel('Frame #');ylabel('Distance in coordinate points'); 

% title(['Net Displacements (Red:+1, Blue:-1, Green: Gap, Yellow:Central)']) 

% SECTION 6: Code for Poincare plots 
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array1= gap;param='Gap'; 

%options:"pos_count","neg_count","pos_count+neg_count","pos_displacement","neg_di

splacement","central_displacement","gap" 

len=length(array1); 

ele=len+1; 

array2=zeros(ele,1); 

array2(1)=0; 

array2(2:ele)=array1; 

  

% center=(min(array1)+ max(array1))/2; 

  

sdsd=sqrt(mean((array1(2:len)-array2(2:len)).^2)-(mean(array1(2:len)-array2(2:len)))^2); 

sdrr=sqrt(mean((array1).^2)-(mean(array1))^2); 

sd1=sqrt((sdsd^2)/2); 

sd2= sqrt(2*sdrr^2-sd1^2); 

e=sd2/sd1 

% figure(19); 

% plot(array2(2:ele-1),array1(2:ele-1),'r.'); 

% title(['Poincare Plot  of ', param]); 

% xlabel('Previous measure');ylabel('Next Measure');hold on; 

% plot(1:1.5*max(array1),1:1.5*max(array1),'--');hold on; 

% t=0:0.01:2*pi; 

% sds1=1.01; 



www.manaraa.com

194 
 

% sds2=1.85 

% xx = sds2*sin(t) ; 

% yy = sds1*cos(t) ; 

% xx2 = xx*cos(pi/4) - yy*sin(pi/4) + center; 

% yy2 = xx*sin(pi/4) + yy*cos(pi/4) + center; 

% plot(xx2,yy2);axis equal; 

  

% str={'sd1=',sd1,'sd2=',sd2,'mult=',mult,'corr=',corr}; 

% text(max(array1)/10,1.2*max(array1),str); 

  

%for intensity on each column 

% mid= round(M/2); 

% for nnn=1:num 

% hor_intensity (nnn,:)= cube(mid,:,nnn); 

% vert_intensity (nnn,:)= cube(:,mid,nnn); 

% end 

%% 

figure(20);plot(speckle_cor);title('Speckle Correlation'); 

figure(21);plot(vortex_cor);title('Vortex Correlation'); 

figure(22);plot(rel_cor1);title('Speckle Rel Correlation'); 

figure(23);plot(rel_cor2);title('Vortex Rel Correlation'); 
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B.3 Power spectral density (PSD) function creation and plotting 
 

(Primarily used for calculations in Chapter 5) 

(Variable “cube” needs to be created using either B.1 or B.2 above and input through the 

first 2 lines here) 

clearvars -except cube M; 

arr = cube(:,:,31); 

psd=(fft2(arr)).*conj(fft2(arr)); 

image(fftshift(psd));axis equal;axis tight; 

k=size(arr); 

len=k(1); 

hold on; 

ang=0:0.01:2*pi; 

for r=2:10 

    rad= len/r; 

    plot(len/2+rad*cos(ang), len/2+rad*sin(ang));hold on; 

end 

B.4 Measuring Poincaré analysis parameters with changing 
coarsing factors 
 

(Primarily used for calculations in chapter 5; Can be used for calculating all parameters described 
in chapter 2) 

(The variable “cube” needs to be imported from B.1 or B.2) 

array1= cube(10,:,35); 
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len=length(array1); 

%fact 

phi0= var(array1);% same value for cf=0 

gamma0=mean(array1.^2);% same value for cf=0 

%array1=correl(:,200); 

for cf=1:20 %coarsing factor  %for standard poincare, cf =1 

sum=0; 

sum_gamma=0; 

sum_phi=0; 

for i=1:len-cf 

sum=sum+array1(i)-array1(i+cf); 

sum_gamma=sum_gamma+array1(i)*array1(i+cf); 

sum_phi=sum_phi+(array1(i)-mean(array1))*(array1(i+cf)-mean(array1)); 

end 

  

sd1= sqrt(var(array1(1:len-cf)-array1(cf+1:len))/2); 

sd2= sqrt(2*var(array1)-sd1^2); 

  

  

% plot(array2(cf+1:len),array1(cf+1:len),'r.'); 

% title('Poincare Plot of Intensity'); 

% xlabel('Previous measure');ylabel('Next Measure');hold on; 

% plot(0.01:1.5*max(array1),0.01:1.5*max(array1),'--');hold on; 
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%  

% for t=0:0.01:2*pi 

%     x_new = sd2*cos(t); 

%     y_new = sd1*sin(t); 

%     x= x_new*cos(pi/4)- y_new*sin(pi/4)+center; 

%     y= x_new*sin(pi/4) + y_new*cos(pi/4)+center; 

%     plot(x,y,'r.','markersize',20);hold on;axis equal; 

% end 

cf 

error1 = 2*(mean(array1)^2)-(mean(array1))*(mean(array1(1:len-

cf))+mean(array1(1+cf:len))); 

error2=(sum/(len-cf))^2; 

error3 = mean(array1(1:len-cf).^2) + mean(array1(1+cf:len).^2)- 2*mean(array1.^2); 

error= error1+ (error3-error2)/2; 

gamma_k=sum_gamma/(len-cf); 

phi_k=sum_phi/(len-cf); 

%check_eqn7_phi_k= gamma_k + error1 - (mean(array1)^2) 

%sd1 

%sd2 

e=sd2/sd1 

% str={'sd1=',sd1,'sd2=',sd2,'esf=',esf}; 

% text(max(array1)/10,0.5*max(array1),str) 
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end 

 

B.5 Measurements on speckle images obtained from fluid 
phantom and animal tissues  
 

(Primarily used for calculations in Chapter 5) 

 

close all 

clear all 

% 

warning off 

% Import 

images=256;%No. of images to input 

skip_factor=1;%'1' for no skipping 

coarsing_factor=1; 

datapath= 'F:\Photonics_west_data\Sar_data\'; 

imagepath= 'F:\phantom\BW\'; 

%prefix='fc2_save_2018-06-22-163243-';   

format='.bmp';       %input 

for folder = 51:67 % folders are numbered 

% for count = 0:5 

% if(count<=6) 

%   datapath= 'F:\Photonics_west2109_data\Saratov_data\Mouse_data\Mouse capillaries 

speckle\'; 
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% imagepath= 'F:\mouse\BW\';  

% folder=count+1; 

% M=1032; 

% N=1032; 

% else 

% datapath= 'F:\Photonics_west_data\Sar_data\'; 

% imagepath= 'F:\phantom\BW\';  

% if(count<=2) 

%     folder=count; 

% else folder=count+30; 

% end 

  

M=1024; 

N=1024; 

  

% count 

folder 

for num=1:images 

  %num 

  im= imread(strcat(datapath,num2str(folder,'%02g'),'\',num2str((num-

1),'%04g'),format)); 

  im=im(:,:,1); 

  im=double(im); 
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  %raw_cube(:,:,num)=im; 

  %imfilt=imgaussfilt(im,12); 

  cube(:,:,num)=im; 

end 

% M= 1032; %no. of rows 

% N=1032; % no. of columns 

%end AM import 

coarsing_factor=1;      % set '1' for standard poincare default 

sd1_matrix = NaN(N,M); 

sd2_matrix = NaN(N,M); 

esf_matrix = NaN(N,M); 

mssd_matrix= NaN(N,M); 

for i = 1:M 

    for j = 1:N 

        for k = 1:num   % This loop is needed to make array1 2-D 

array1(k)= cube(i,j,k); % obtained from the cube of intensity 

        end 

len=length(array1); 

ele=len+coarsing_factor; 

array2=zeros(1,ele); 

array2(1:coarsing_factor)=0; 

array2(coarsing_factor+1:ele)=array1; 
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sdsd=sqrt(mean((array1(coarsing_factor+1:len)-array2(coarsing_factor+1:len)).^2)-

(mean(array1(coarsing_factor+1:len)-array2(coarsing_factor+1:len)))^2); 

sdrr=sqrt(mean((array1).^2)-(mean(array1))^2); 

sd1=sqrt((sdsd^2)/2); 

sd2= sqrt(2*sdrr^2-sd1^2); 

sum=0; 

for t=1:len-coarsing_factor 

sum=sum+((array1(t)-array1(t+coarsing_factor))^2); 

end 

mssd_matrix(i,j)=sum/(len-coarsing_factor);%mean squared successive differences 

sd1_matrix(i,j)=sd1; 

sd2_matrix(i,j)=sd2; 

esf_matrix(i,j)=sd2/sd1; 

% test_matrix(i,j)=(sd2-sd1)./(sd2+sd1); 

    end 

end 

%The following is to display the images 

figure(1);imagesc(sd1_matrix);title('SD1 value for each pixel');colorbar;%colormap gray 

figure(2);imagesc(sd2_matrix);title('SD2 value for each pixel');colorbar;%colormap gray 

figure(3);imagesc((test_matrix));title('(Long Term - Short Term Variation) / Total 

Variation');colorbar;%colormap gray 

figure(4);imagesc(sqrt(esf_matrix));title('Ellipticity (=SD2/SD1) value for each 

pixel');colorbar;%colormap gray 
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figure(5);imagesc(mssd_matrix);title('MSSD value for each pixel');colorbar; %colormap 

gray 

sd1_max=max(max(sd1_matrix)) 

sd2_max=max(max(sd2_matrix)) 

e_min=min(min(esf_matrix)) 

mssd_max= max(max(mssd_matrix)) 

  

sd1_mean_in=nanmean(sd1_matrix(620,:)) 

sd2_mean_in=nanmean(sd2_matrix(620,:)) 

e_mean_in=nanmean(esf_matrix(620,:)) 

mssd_mean_in= nanmean(mssd_matrix(620,:)) 

  

sd1_mean_out=nanmean(sd1_matrix(320,:)) 

sd2_mean_out=nanmean(sd2_matrix(320,:)) 

e_mean_out=nanmean(esf_matrix(320,:)) 

 mssd_mean_out= nanmean(mssd_matrix(320,:)) 

  

%The following is to save the images 

fig1=imagesc(sd1_matrix);title('SD1 value for each pixel');colorbar;colormap gray; 

saveas(fig1, [strcat(imagepath,num2str(folder,'%02g'),'\fig1')], 'bmp'); 

fig2=imagesc(sd2_matrix);title('SD2 value for each pixel');colorbar;colormap gray; 

saveas(fig2, [strcat(imagepath,num2str(folder,'%02g'),'\fig2')], 'bmp'); 



www.manaraa.com

203 
 

fig3=imagesc((test_matrix));title('(Long Term - Short Term Variation) / Total 

Variation');colorbar;colormap gray; 

saveas(fig3, [strcat(imagepath,num2str(folder,'%02g'),'\fig3')], 'bmp'); 

fig4=imagesc(sqrt(esf_matrix));title('Ellipticity (=SD2/SD1) value for each 

pixel');colorbar;colormap gray; 

saveas(fig4, [strcat(imagepath,num2str(folder,'%02g'),'\fig4')], 'bmp'); 

fig5=imagesc(mssd_matrix);title('MSSD value for each pixel');colorbar; colormap gray; 

saveas(fig5, [strcat(imagepath,num2str(folder,'%02g'),'\fig5')], 'bmp'); 

  

% %The following is to draw the Poincare plots 

choose_x= 258; %Between 0 and M, choose the x-coordinate of point for which Poincare 

plot needs to be drawn 

choose_y= 242; %Between 0 and M, y-coordinate 

for k = 1:num   % This loop is needed to make array1 2-D 

array1(k)= cube(choose_x,choose_y,k); % obtained from the cube of intensity 

        end 

len=length(array1); 

ele=len+coarsing_factor; 

array2=zeros(1,ele); 

array2(1:coarsing_factor)=0; 

array2(coarsing_factor+1:ele)=array1; 

sdsd=sqrt(mean((array1(coarsing_factor+1:len)-array2(coarsing_factor+1:len)).^2)-

(mean(array1(coarsing_factor+1:len)-array2(coarsing_factor+1:len)))^2); 
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sdrr=sqrt(mean((array1).^2)-(mean(array1))^2); 

sd1=sqrt((sdsd^2)/2); 

sd2= sqrt(2*sdrr^2-sd1^2); 

center=(min(array1)+ max(array1))/2; 

figure(10);plot(array2(coarsing_factor+1:len),array1(coarsing_factor+1:len),'r.');hold on 

title('Poincare Plot of Intensity '); 

xlabel('Previous measure');ylabel('Next Measure');hold on; 

plot(0.01:1.5*max(array1),0.01:1.5*max(array1),'b-','linewidth',2);hold on; 

for t=0:0.01:2*pi 

    x_new = sd2*cos(t); 

    y_new = sd1*sin(t); 

    x= x_new*cos(pi/4)- y_new*sin(pi/4)+center; 

    y= x_new*sin(pi/4) + y_new*cos(pi/4)+center; 

    plot(x,y,'r.','markersize',20);hold on;axis equal; 

end 

  

str={'sd1=',sd1,'sd2=',sd2,'e=',sd2/sd1}; 

text(max(array1)/10,0.8*max(array1),str) 

  

  

% Examine pdf of ellipticity 

% x=esf_matrix(:); 

% [f,xi] = ksdensity(x); 
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% %xi=xi./mean(xi); 

% figure(5);plot(xi,f./sum(f),'k','linewidth',2);%Normalizes 

% grid on 

% %xlabel('I/<I>');ylabel('P(I)');%axis([0 2.5 0 1]); 

% title('PDF '); 

% hold on 

  

%plot a single pixel intensity through stack 

% I=squeeze(cube(500,193,[1:num])); 

% figure(6);plot([1:num],I); 

% xlabel('Frame number');ylabel('Pixel intensity'); 

% title('Intensity of single pixel through speckle cube'); 

%% 

%start SJK contrast measurements 

% % cube=imread('C:\Russia_Saratov2017\Saratov_data\Mouse_data\Mouse capillaries 

speckle\18\0100.bmp'); 

% % cube=double(cube); 

% % cube=cube(:,:,1); 

% cube=cube(:,:,100); 

% %num=100; 

% %  

%  

%  
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% % Spatial contrast 

% %for k=no_frames:num-no_frames 

% kernel=ones(3,3); 

% sc=size(kernel); 

% Nk=sc(1)*sc(2); 

% fac=Nk/(Nk-1); 

% mu_x=imfilter(cube,kernel,'conv')/Nk; 

% x_sq=imfilter(cube.*cube,kernel,'conv')/(Nk-1); 

% var_x=sqrt(x_sq - fac*mu_x.^2); 

% Cs=var_x./mu_x; 

% s = fix(3/2); 

% Cs(1:s,:,:) = []; 

% Cs(end-s+1:end,:,:) = []; 

% Cs(:,1:s,:) = []; 

% Cs(:,end-s+1:end,:) = []; 

% %figure(13);imagesc(Cs,[0 1.5]);colorbar 

% figure(6);imagesc(Cs);colorbar;%colormap gray 

% title(['Spatial contrast frame']);%pause 

% % for j=1:num 

% %h=fspecial('gaussian',[15 15],.1); 

% h=fspecial('disk',[5]); 

% filteredCs = imfilter(Cs, h); 

% figure(7); imagesc(filteredCs);colorbar;title(['Spatial Contrast']); 
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%  

% %Temporal Contrast 

% depth=num; 

% kernel=ones(1,1,depth); 

% Nk=depth; 

% fac=Nk/(Nk-1); 

% mu_x=imfilter(cube,kernel,'conv')/Nk; 

% x_sq=imfilter(cube.*cube,kernel,'conv')/(Nk-1); 

% var_x=real(sqrt(x_sq - fac*mu_x.^2)); 

% Ct=var_x./mu_x; 

% s = fix(3/2); 

% Ct(1:s,:,:) = []; 

% Ct(end-s+1:end,:,:) = []; 

% Ct(:,1:s,:) = []; 

% Ct(:,end-s+1:end,:) = []; 

% %Ct=squeeze(Ct(:,:,depth)); 

% %Ct=flipud(Ct); 

% figure(8);imagesc(Ct);colorbar;title(['Temporal Contrast']); 

%end SJK contrast measurements 

  

%start AM contrast measurements 

%Temporal contrast %calculate this before spatial contrast to avoid issues 

%with the variable 'std' 
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for i=1:M 

    for j=1:N 

mu(i,j)=mean(cube(i,j,:)); 

sigma(i,j)=std(cube(i,j,:)); 

temp_K(i,j)=sigma(i,j)/mu(i,j); 

    end 

end 

figure(6);imagesc(temp_K);colorbar;title('Temporal Contrast '); 

fig6=imagesc(temp_K);colorbar;title('Temporal Contrast ');colormap gray; 

saveas(fig6, [strcat(imagepath,num2str(folder,'%02g'),'\fig6')], 'bmp'); 

%Integrated image Spatial contrast 

frame=images;%No. of images to add for spatial contrast %measure of camera 

integration 

cw=7;%contrast window 

K=zeros(size(cube,1),size(cube,2)); 

matres(:,:,1)=cube(:,:,1); 

for i=2:frame 

    matres(:,:,i)=matres(:,:,i-1)+cube(:,:,i); 

%     i %to know where the loop is 

end 

for i=1+floor(cw/2):M-floor(cw/2) 

    for j=1+floor(cw/2):N-floor(cw/2) 
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        spat_K(i,j)=std2(matres(i-floor(cw/2):i+floor(cw/2),j-

floor(cw/2):j+floor(cw/2),frame))/mean(mean(matres(i-floor(cw/2):i+floor(cw/2),j-

floor(cw/2):j+floor(cw/2),frame))); 

    end 

end 

figure(7);imagesc(spat_K);colorbar;title('Spatial Contrast (for integrated image)'); 

fig7=imagesc(spat_K);colorbar;title('Spatial Contrast (for integrated image)'); 

saveas(fig7, [strcat(imagepath,num2str(folder,'%02g'),'\fig7')], 'bmp'); 

% %Single Frame Spatial Contrast 

%For future purposes; NOT in dissertation 

sing_frame=cube(:,:,25); %input frame 

for i=1+floor(cw/2):M-floor(cw/2) 

    for j=1+floor(cw/2):N-floor(cw/2) 

        spat_K2(i,j)=std2(sing_frame(i-floor(cw/2):i+floor(cw/2),j-

floor(cw/2):j+floor(cw/2)))/mean(mean(sing_frame(i-floor(cw/2):i+floor(cw/2),j-

floor(cw/2):j+floor(cw/2)))); 

    end 

end 

%figure(8);imagesc(spat_K2);colorbar;title('Spatial Contrast (for single frame)'); 

fig8=imagesc(spat_K2);colorbar;title('Spatial Contrast (for single frame)'); 

saveas(fig8, [strcat(imagepath,num2str(folder,'%02g'),'\fig8')], 'bmp'); 

tempK_min=min(min(temp_K)) 

tempK_max=max(max(temp_K)) 
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tempK_mean=mean(temp_K(620,:)) 

%end AM contrast measurements 

end 
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